
PHP Tutorial - Learn PHP

If you want to learn the basics of PHP, then you've come to the right place. The goal of this tutorial is to
teach you the basics of PHP so that you can:

• Customize PHP scripts that you download, so that they better fit your needs.
• Begin to understand the working model of PHP, so you may begin to design your own PHP projects.
• Give you a solid base in PHP, so as to make you more valuable in the eyes of future employers.

PHP stands for PHP Hypertext Preprocessor.

PHP - What is it?

Taken directly from PHP's home, PHP.net, "PHP is an HTML-embedded scripting language. Much of its
syntax is borrowed from C, Java and Perl with a couple of unique PHP-specific features thrown in. The goal of
the language is to allow web developers to write dynamically generated pages quickly."

This is generally a good definition of PHP. However, it does contain a lot of terms you may not be used to.
Another way to think of PHP is a powerful, behind the scenes scripting language that your visitors won't see!

When someone visits your PHP webpage, your web server processes the PHP code. It then sees which
parts it needs to show to visitors(content and pictures) and hides the other stuff(file operations, math
calculations, etc.) then translates your PHP into HTML. After the translation into HTML, it sends the webpage to
your visitor's web browser.

PHP - What's it do?

It is also helpful to think of PHP in terms of what it can do for you. PHP will allow you to:

• Reduce the time to create large websites.
• Create a customized user experience for visitors based on information that you have gathered from

them.
• Open up thousands of possibilities for online tools. Check out PHP - HotScripts for examples of the great

things that are possible with PHP.
• Allow creation of shopping carts for e-commerce websites.

What You Should Know

Before starting this tutorial it is important that you have a basic understanding and experience in the
following:

• HTML - Know the syntax and especially HTML Forms.
• Basic programming knowledge - This isn't required, but if you have any traditional programming

experience it will make learning PHP a great deal easier.

http://www.php.net/
http://www.hotscripts.com/PHP/Scripts_and_Programs/
http://www.tizag.com/htmlT/forms.php

Tutorial Overview

This tutorial is aimed at the PHP novice and will teach you PHP from the ground up. If you want a drive-
through PHP tutorial this probably is not the right tutorial for you.

Remember, you should not try to plow through this tutorial in one sitting. Read a couple lessons, take a
break, then do some more after the information has had some time to sink in.

http://www.tizag.com/phpT/index.php

PHP - Syntax

Before we talk about PHP's syntax, let us first define what syntax is referring to.

• Syntax - The rules that must be followed to write properly structured code.

PHP's syntax and semantics are similar to most other programming languages (C, Java, Perl) with the
addition that all PHP code is contained with a tag, of sorts. All PHP code must be contained within the
following...

PHP Code:

<?php

?>

or the shorthand PHP tag that requires shorthand support to be enabled

on your server...

<?

?>

If you are writing PHP scripts and plan on distributing them, we suggest that you use the standard form
(which includes the ?php) rather than the shorthand form. This will ensure that your scripts will work, even
when running on other servers with different settings.

How to Save Your PHP Pages

If you have PHP inserted into your HTML and want the web browser to interpret it correctly, then you must
save the file with a .php extension, instead of the standard .html extension. So be sure to check that you are
saving your files correctly. Instead of index.html, it should be index.php if there is PHP code in the file.

Example Simple HTML & PHP Page

Below is an example of one of the easiest PHP and HTML page that you can create and still follow web
standards.

PHP and HTML Code:

<html>

<head>

<title>My First PHP Page</title>

</head>

<body>

<?php

echo "Hello World!";

?>

</body>

</html>

Display:

Hello World!

If you save this file and place it on PHP enabled server and load it up in your web browser, then you
should see "Hello World!" displayed. If not, please check that you followed our example correctly.

We used the PHP function echo to write "Hello World!" and we will be talking in greater depth about this
PHP function and many others later on in this tutorial.

The Semicolon!

As you may or may not have noticed in the above example, there was a semicolon after the line of PHP
code. The semicolon signifies the end of a PHP statement and should never be forgotten. For example, if we
repeated our "Hello World!" code several times, then we would need to place a semicolon at the end of each
statement.

PHP and HTML Code:

<html>

<head>

<title>My First PHP Page</title>

</head>

<body>

<?php

echo "Hello World! ";

echo "Hello World! ";

echo "Hello World! ";

echo "Hello World! ";

echo "Hello World! ";

?>

</body>

</html>

Display:

Hello World! Hello World! Hello World! Hello World! Hello World!

White Space

As with HTML, whitespace is ignored between PHP statements. This means it is OK to have one line of
PHP code, then 20 lines of blank space before the next line of PHP code. You can also press tab to indent your
code and the PHP interpreter will ignore those spaces as well.

PHP and HTML Code:

<html>

<head>

<title>My First PHP Page</title>

</head>

<body>

<?php

echo "Hello World!";

echo "Hello World!";

?>

</body>

</html>

Display:

Hello World!Hello World!

This is perfectly legal PHP code.

PHP - Variables

If you have never had any programming, Algebra, or scripting experience, then the concept of variables
might be a new concept to you. A detailed explanation of variables is beyond the scope of this tutorial, but
we've included a refresher crash course to guide you.

A variable is a means of storing a value, such as text string "Hello World!" or the integer value 4. A
variable can then be reused throughout your code, instead of having to type out the actual value over and over
again.
In PHP you define a variable with the following form:

• $variable_name = Value;

If you forget that dollar sign at the beginning, it will not work. This is a common mistake for new PHP
programmers!

A Quick Variable Example

Say that we wanted to store the values that we talked about in the above paragraph. How would we go
about doing this? We would first want to make a variable name and then set that equal to the value we want.
See our example below for the correct way to do this.

PHP Code:

<?php

$hello = "Hello World!";

$a_number = 4;

$anotherNumber = 8;

?>

Note for programmers: PHP does not require variables to be declared before being initialized.

PHP Variable Naming Conventions

There are a few rules that you need to follow when choosing a name for your PHP variables.

• PHP variables must start with a letter or underscore "_".
• PHP variables may only be comprised of alpha-numeric characters and underscores. a-z, A-Z, 0-9, or

_ .
• Variables with more than one word should be separated with underscores. $my_variable
• Variables with more than one word can also be distinguished with capitalization. $myVariable

PHP - Echo

As you saw in the previous lesson, the PHP function echo is a means of outputting text to the web
browser. Throughout your PHP career you will be using the echo function more than any other. So let's give it a
solid perusal!

Outputting a String

To output a string, like we have done in previous lessons, use the PHP echo function. You can place
either a string variable or you can use quotes, like we do below, to create a string that the echo function will
output.

PHP Code:

<?php

$myString = "Hello!";

echo $myString;

echo "<h5>I love using PHP!</h5>";

?>

Display:

Hello!

I love using PHP!

In the above example we output "Hello!" without a hitch. The text we are outputting is being sent to the
user in the form of a web page, so it is important that we use proper HTML syntax!

In our second echo statement we use echo to write a valid Header 5 HTML statement. To do this we
simply put the <h5> at the beginning of the string and closed it at the end of the string. Just because you're
using PHP to make web pages does not mean you can forget about HTML syntax!

Careful When Echoing Quotes!

It is pretty cool that you can output HTML with PHP. However, you must be careful when using HTML
code or any other string that includes quotes! The echo function uses quotes to define the beginning and
end of the string, so you must use one of the following tactics if your string contains quotations:

• Don't use quotes inside your string
• Escape your quotes that are within the string with a slash. To escape a quote just place a slash directly

before the quotation mark, i.e. \"
• Use single quotes (apostrophes) for quotes inside your string.

See our example below for the right and wrong use of the echo function:

PHP Code:

<?php

// This won't work because of the quotes around specialH5!

echo "<h5 class="specialH5">I love using PHP!</h5>";

// OK because we escaped the quotes!

echo "<h5 class=\"specialH5\">I love using PHP!</h5>";

// OK because we used an apostrophe '

echo "<h5 class='specialH5'>I love using PHP!</h5>";

?>

If you want to output a string that includes quotations, either use an apostrophe (') or escape the
quotations by placing a slash in front of it (\"). The slash will tell PHP that you want the quotation to be used
within the string and NOT to be used to end echo's string.

Echoing Variables

Echoing variables is very easy. The PHP developers put in some extra work to make the common task of
echoing all variables nearly foolproof! No quotations are required, even if the variable does not hold a string.
Below is the correct format for echoing a variable.

PHP Code:

<?php

$my_string = "Hello Bob. My name is: ";

$my_number = 4;

$my_letter = a;

echo $my_string;

echo $my_number;

echo $my_letter;

?>

Display:

Hello Bob. My name is: 4a

Echoing Variables and Text Strings

You can also combine text strings and variables. By doing such a conjunction you save yourself from
having to do a large number of echo statements. Variables and text strings are joined together with a period(.
). The example below shows how to do such a combination.

PHP Code:

<?php

$my_string = "Hello Bob. My name is: ";

$newline = "
";

echo $my_string."Bobettta".$newline;

echo "Hi, I'm Bob. Who are you? ".$my_string.$newline;

echo "Hi, I'm Bob. Who are you? ".$my_string."Bobetta";

?>

Display:

Hello Bob. My name is: Bobetta
Hi, I'm Bob. Who are you? Hello Bob. My name is:
Hi, I'm Bob. Who are you? Hello Bob. My name is: Bobetta

This combination can be done multiple times, as the example shows. This method of joining two or more
strings together is called concatenation and we will talk more about this and other forms of string manipulation
in our string lesson.

http://www.tizag.com/phpT/strings.php

PHP - Strings

In the last lesson, PHP Echo, we used strings a bit, but didn't talk about them in depth. Throughout your
PHP career you will be using strings a great deal, so it is important to have a basic understanding of PHP
strings.

PHP - String Creation

Before you can use a string you have to create it! A string can be used directly in a function or it can be
stored in a variable. Below we create the exact same string twice: first storing it into a variable and in the
second case we place the string directly into a function.

PHP Code:

$my_string = "Tizag - Unlock your potential!";

echo "Tizag - Unlock your potential!";

echo $my_string;

In the above example the first string will be stored into the variable $my_string, while the second string will
be used in the echo function and not be stored. Remember to save your strings into variables if you plan on
using them more than once! Below is the output from our example code. They look identical just as we thought.

Display:

Tizag - Unlock your potential! Tizag - Unlock your potential!

PHP - String Creation Single Quotes

Thus far we have created strings using double-quotes, but it is just as correct to create a string using
single-quotes, otherwise known as apostrophes.

PHP Code:

$my_string = 'Tizag - Unlock your potential!';

echo 'Tizag - Unlock your potential!';

echo $my_string;

If you want to use a single-quote within the string you have to escape the single-quote with a backslash \ .
Like this: \' !

PHP Code:

echo 'Tizag - It\'s Neat!';

http://www.tizag.com/phpT/echo.php

PHP - String Creation Double-Quotes

We have used double-quotes and will continue to use them as the primary method for forming strings.
Double-quotes allow for many special escaped characters to be used that you cannot do with a single-quote
string. Once again, a backslash is used to escape a character.

PHP Code:

$newline = "A newline is \n";

$return = "A carriage return is \r";

$tab = "A tab is \t";

$dollar = "A dollar sign is \$";

$doublequote = "A double-quote is \"";

Note: If you try to escape a character that doesn't need to be, such as an apostrophe, then the backslash
will show up when you output the string.

These escaped characters are not very useful for outputting to a web page because HTML ignore extra
white space. A tab, newline, and carriage return are all examples of extra (ignorable) white space. However,
when writing to a file that may be read by human eyes these escaped characters are a valuable tool!

PHP - String Creation Heredoc

The two methods above are the traditional way to create strings in most programming languages. PHP
introduces a more robust string creation tool called heredoc that lets the programmer create multi-line strings
without using quotations. However, creating a string using heredoc is more difficult and can lead to problems if
you do not properly code your string! Here's how to do it:

PHP Code:

$my_string = <<<TEST

Tizag.com

Webmaster Tutorials

Unlock your potential!

TEST;

echo $my_string;

There are a few very important things to remember when using heredoc.

• Use <<< and some identifier that you choose to begin the heredoc. In this example we chose TEST as
our identifier.

• Repeat the identifier followed by a semicolon to end the heredoc string creation. In this example that
was TEST;

• The closing sequence TEST; must occur on a line by itself and cannot be indented!

Another thing to note is that when you output this multi-line string to a web page, it will not span multiple
lines because we did not have any
 tags contained inside our string! Here is the output made from the
code above.

Display:

Tizag.com Webmaster Tutorials Unlock your potential!

Once again, take great care in following the heredoc creation guidelines to avoid any headaches.

PHP - Operators

In all programming languages, operators are used to manipulate or perform operations on variables and
values. You have already seen the string concatenation operator "." in the Echo Lesson and the assignment
operator "=" in pretty much every PHP example so far.

There are many operators used in PHP, so we have separated them into the following categories to make
it easier to learn them all.

• Assignment Operators
• Arithmetic Operators
• Comparison Operators
• String Operators
• Combination Arithmetic & Assignment Operators

Assignment Operators

Assignment operators are used to set a variable equal to a value or set a variable to another variable's
value. Such an assignment of value is done with the "=", or equal character. Example:

• $my_var = 4;
• $another_var = $my_var

Now both $my_var and $another_var contain the value 4. Assignments can also be used in conjunction
with arithmetic operators.

Arithmetic Operators

Operator English Example
+ Addition 2 + 4
- Subtraction 6 - 2
* Multiplication 5 * 3
/ Division 15 / 3
% Modulus 43 % 10

http://www.tizag.com/phpT/echo.php

PHP Code:

$addition = 2 + 4;

$subtraction = 6 - 2;

$multiplication = 5 * 3;

$division = 15 / 3;

$modulus = 5 % 2;

echo "Perform addition: 2 + 4 = ".$addition."
";

echo "Perform subtraction: 6 - 2 = ".$subtraction."
";

echo "Perform multiplication: 5 * 3 = ".$multiplication."
";

echo "Perform division: 15 / 3 = ".$division."
";

echo "Perform modulus: 5 % 2 = " . $modulus

 . ". Modulus is the remainder after the division operation has been performed.

 In this case it was 5 / 2, which has a remainder of 1.";

Display:

Perform addition: 2 + 4 = 6
Perform subtraction: 6 - 2 = 4
Perform multiplication: 5 * 3 = 15
Perform division: 15 / 3 = 5
Perform modulus: 5 % 2 = 1. Modulus is the remainder after the division operation has been
performed. In this case it was 5 / 2, which has a remainder of 1.

Comparison Operators

Comparisons are used to check the relationship between variables and/or values. If you would like to see
a simple example of a comparison operator in action, check out our If Statement Lesson. Comparison operators
are used inside conditional statements and evaluate to either true or false. Here are the most important
comparison operators of PHP.
Assume: $x = 4 and $y = 5;

Operator English Example Result
== Equal To $x == $y false
!= Not Equal To $x != $y true
< Less Than $x < $y true
> Greater Than $x > $y false
<= Less Than or Equal To $x <= $y true
>= Greater Than or Equal To $x >= $y false

http://www.tizag.com/phpT/if.php

String Operators

As we have already seen in the Echo Lesson, the period "." is used to add two strings together, or more
technically, the period is the concatenation operator for strings.

PHP Code:

$a_string = "Hello";

$another_string = " Billy";

$new_string = $a_string . $another_string;

echo $new_string . "!";

Display:

Hello Billy!

Combination Arithmetic & Assignment Operators

In programming it is a very common task to have to increment a variable by some fixed amount. The most
common example of this is a counter. Say you want to increment a counter by 1, you would have:

• $counter = $counter + 1;

However, there is a shorthand for doing this.

• $counter += 1;

This combination assignment/arithmetic operator would accomplish the same task. The downside to this
combination operator is that it reduces code readability to those programmers who are not used to such an
operator. Here are some examples of other common shorthand operators. In general, "+=" and "-=" are the
most widely used combination operators.

Operator English Example Equivalent Operation
+= Plus Equals $x += 2; $x = $x + 2;
-= Minus Equals $x -= 4; $x = $x - 4;
*= Multiply Equals $x *= 3; $x = $x * 3;
/= Divide Equals $x /= 2; $x = $x / 2;
%= Modulo Equals $x %= 5; $x = $x % 5;
.= Concatenate Equals $my_str.="hello"; $my_str = $my_str . "hello";

http://www.tizag.com/phpT/echo.php

Pre/Post-Increment & Pre/Post-Decrement

This may seem a bit absurd, but there is even a shorter shorthand for the common task of adding 1 or
subtracting 1 from a variable. To add one to a variable or "increment" use the "++" operator:

• $x++; Which is equivalent to $x += 1; or $x = $x + 1;

To subtract 1 from a variable, or "decrement" use the "--" operator:

• $x--; Which is equivalent to $x -= 1; or $x = $x - 1;

In addition to this "shorterhand" technique, you can specify whether you want the increment to before the
line of code is being executed or after the line has executed. Our PHP code below will display the difference.

PHP Code:

$x = 4;

echo "The value of x with post-plusplus = " . $x++;

echo "
 The value of x after the post-plusplus is " . $x;

$x = 4;

echo "
The value of x with with pre-plusplus = " . ++$x;

echo "
 The value of x after the pre-plusplus is " . $x;

Display:

The value of x with post-plusplus = 4
The value of x after the post-plusplus is = 5
The value of x with with pre-plusplus = 5
The value of x after the pre-plusplus is = 5

As you can see the value of $x++ is not reflected in the echoed text because the variable is not
incremented until after the line of code is executed. However, with the pre-increment "++$x" the variable does
reflect the addition immediately.

Using Comments in PHP

Comments in PHP are similar to comments that are used in HTML. The PHP comment syntax always
begins with a special character sequence and all text that appears between the start of the comment and the
end will be ignored by the browser.

In HTML a comment's main purpose is to serve as a note to you, the web developer or to others who may
view your website's source code. However, PHP's comments are different in that they will not be displayed to
your visitors. The only way to view PHP comments is to open the PHP file for editing. This makes PHP
comments only useful to PHP programmers.

In case you forgot what an HTML comment looked like, see our example below.

HTML Code:

<!--- This is an HTML Comment -->

PHP Comment Syntax: Single Line Comment

While there is only one type of comment in HTML, PHP has two types. The first type we will discuss is the
single line comment. The single line comment tells the interpreter to ignore everything that occurs on that line
to the right of the comment. To do a single line comment type "//" and all text to the right will be ignored by PHP
interpreter.

PHP Code:

<?php

echo "Hello World!"; // This will print out Hello World!

echo "
Psst...You can't see my PHP comments!"; // echo "nothing";

// echo "My name is Humperdinkle!";

?>

Display:

Hello World!
Psst...You can't see my PHP comments!

Notice that a couple of our echo statements were not evaluated because we commented them out with the
single line comment. This type of line commenting is often used for quick notes about complex and confusing
code or to temporarily remove a line of PHP code.

PHP Comment Syntax: Multiple Line Comment

Similiar to the HTML comment, the multi-line PHP comment can be used to comment out large blocks of
code or writing multiple line comments. The multiple line PHP comment begins with " /* " and ends with " */ ".

PHP Code:

<?php

/* This Echo statement will print out my message to the

the place in which I reside on. In other words, the World. */

echo "Hello World!";

/* echo "My name is Humperdinkle!";

echo "No way! My name is Uber PHP Programmer!";

*/

?>

Display:

Hello World!

Good Commenting Practices

One of the best commenting practices that I can recommend to new PHP programmers is....USE THEM!!
So many people write complex PHP code and are either too lazy to write good comments or believe the
commenting is not needed. However, do you really believe that you will remember exactly what you were
thinking when looking at this code a year or more down the road?

Let the comments permeate your code and you will be a happier PHPer in the future. Use single line
comments for quick notes about a tricky part in your code and use multiple line comments when you need to
describe something in greater depth than a simple note.

The Include Function

Without understanding much about the details of PHP, you can save yourself a great deal of time with the
use of the PHP include function. The include function takes a file name and simply inserts that file's contents
into the script that calls used the include function.

Why is this a cool thing? Well, first of all, this means that you can type up a common header or menu file
that you want all your web pages to include. When you add a new page to your site, instead of having to
update the links on several web pages, you can simply change the Menu file.

An Include Example

Say we wanted to create a common menu file that all our pages will use. A common practice for naming
files that are to be included is to use the ".php" extension. Since we want to create a common menu let's save it
as "menu.php".

menu.php Code:

<html>

<body>

Home -

About Us -

Links -

Contact Us

Save the above file as "menu.php". Now create a new file, "index.php" in the same directory as
"menu.php". Here we will take advantage of the include function to add our common menu.

index.php Code:

<?php include("menu.php"); ?>

<p>This is my home page that uses a common menu to save me time when I add

new pages to my website!</p>

</body>

</html>

Display:

Home - About Us - Links - Contact Us

This is my home page that uses a common menu to save me time when I add new pages
to my website!

And we would do the same thing for "about.php", "links.php", and "contact.php". Just think how terrible it
would be if you had 15 or more pages with a common menu and you decided to add another web page to that
site. You would have to go in an manually edit every single file to add this new page, but with include files you
simply have to change "menu.php" and all your problems are solved. Avoid such troublesome occasions with a
simple include file.

http://www.example.com/index.php
http://www.example.com/about.php
http://www.example.com/links.php
http://www.example.com/contact.php

What do Visitors See?

If we were to use the include function to include a common menu on each of our web pages, what would
the visitor see if they viewed the source of "index.php"? Well, because the include function is pretty much the
same as copying and pasting, the visitors would see:

View Source of index.php to a Visitor:

<html>

<body>

Home -

About Us -

Links -

Contact Us

<p>This is my home page that uses a common menu to save me time when I add

new pages to my website!</p>

</body>

</html>

The visitor would actually see all the HTML code as one long line of HTML code, because we have not
inserted any new line characters. We did some formatting above to make it easier to read. We will be
discussing new line characters later.

Include Recap

The include command simply takes all the text that exists in the specified file and copies it into the file that
uses the include function. Include is quite useful when you want to include the same PHP, HTML, or text
segment on multiple pages of a website. The include function is used widely by PHP web developers.

The next lesson will talk about a slight variation of the include function: the require function. It is often best
to use the require function instead of the include function in your PHP Code. Read the next lesson to find out
why!

PHP Require Function

Just like the previous lesson, the require function is used to include a file into your PHP code. However
there is one huge difference between the two functions, though it might not seem that big of a deal.

Require vs Include

When you include a file with the include function and PHP cannot find it you will see an error message like
the following:

PHP Code:

<?php

include("noFileExistsHere.php");

echo "Hello World!";

?>

Display:

Warning: main(noFileExistsHere.php): failed to open stream: No such file or directory in
/home/websiteName/FolderName/tizagScript.php on line 2 Warning: main(): Failed
opening 'noFileExistsHere.php' for inclusion (include_path='.:/usr/lib/php:/usr/local/lib/php') in
/home/websiteName/FolderName/tizagScript.php on line 2

Hello World!

Notice that our echo statement is still executed, this is because a Warning does not prevent our PHP
script from running. On the other hand, if we did the same example but used the require statement we would
get something like the following example.

PHP Code:

<?php

require("noFileExistsHere.php");

echo "Hello World!";

?>

Display:

Warning: main(noFileExistsHere.php): failed to open stream: No such file or directory in
/home/websiteName/FolderName/tizagScript.php on line 2
Fatal error: main(): Failed opening required 'noFileExistsHere.php'
(include_path='.:/usr/lib/php:/usr/local/lib/php') in
/home/websiteName/FolderName/tizagScript.php on line 2

The echo statement was not executed because our script execution died after the require function
returned a fatal error! We recommend that you use require instead of include because your scripts should not
be executing if necessary files are missing or misnamed.

The If Statement

The PHP if statement is very similar to other programming languages use of the if statement, but for those
who are not familiar with it, picture the following:

Think about the decisions you make before you go to sleep. If you have something to do the next day, say
go to work, school, or an appointment, then you will set your alarm clock to wake you up. Otherwise, you will
sleep in as long as you like!

This simple kind of if/then statement is very common in every day life and also appears in programming
quite often. Whenever you want to make a decision given that something is true (you have something to do
tomorrow) and be sure that you take the appropriate action, you are using an if/then relationship.

The PHP If Statement

The if statement is necessary for most programming, thus it is important in PHP. Imagine that on January
1st you want to print out "Happy New Year!" at the top of your personal web page. With the use of PHP if
statements you could have this process automated, months in advance, occuring every year on January 1st.

This idea of planning for future events is something you would never have had the opportunity of doing if
you had just stuck with HTML.

If Statement Example

The "Happy New Year" example would be a little difficult for you to do right now, so let us instead start off
with the basics of the if statement. The PHP if statement tests to see if a value is true, and if it is a segment of
code will be executed. See the example below for the form of a PHP if statement.

PHP Code:

$my_name = "someguy";

if ($my_name == "someguy") {

 echo "Your name is someguy!
";

}

echo "Welcome to my homepage!";

Display:

Your name is someguy!
Welcome to my homepage!

Did you get that we were comparing the variable $my_name with "someguy" to see if they were equal? In
PHP you use the double equal sign (==) to compare values. Additionally, notice that because the if statement
turned out to be true, the code segment was executed, printing out "Your name is someguy!". Let's go a bit
more in-depth into this example to iron out the details.

• We first set the variable $my_name equal to "someguy".
• We next used a PHP if statement to check if the value contained in the variable $my_name was equal

to "someguy"
• The comparison between $my_name and "someguy" was done with a double equal sign "==", not a

single equals"="! A single equals is for assigning a value to a variable, while a double equals is for
checking if things are equal.

• Translated into english the PHP statement ($my_name == "someguy") is ($my_name is equal to
"someguy").

• $my_name is indeed equal to "someguy" so the echo statement is executed.

A False If Statement

Let us now see what happens when a PHP if statement is not true, in other words, false. Say that we
changed the above example to:

PHP Code:

$my_name = "anotherguy";

if ($my_name == "someguy") {

 echo "Your name is someguy!
";

}

echo "Welcome to my homepage!";

Display:

Welcome to my homepage!

Here the variable contained the value "anotherguy", which is not equal to "someguy". The if statement
evaluated to false, so the code segment of the if statement was not executed. When used properly, the if
statement is a powerful tool to have in your programming arsenal!

If/Else Conditional Statment

Has someone ever told you, "if you work hard, then you will succeed"? And what happens if you do not
work hard? Well, you fail! This is an example of an if/else conditional statement.

• If you work hard then you will succeed.
• Else, if you do not work hard, then you will fail.

How does this translate into something useful for PHP developers? Well consider this:
Someone comes to your website and you want to ask this visitor her name if it is her first time coming to

your site. With an if statement this is easy. Simply have a conditional statement to check, "are you visiting for
the first time". If the condition is true, then take them to the "Insert Your Name" page, else let her view the
website as normal because you have already asked her for her name in the past.

If/Else an Example

Using these conditional statements can add a new layers of "cool" to your website. Here's the basic form
of an if/else statement in PHP.

PHP Code:

$number_three = 3;

if ($number_three == 3) {

 echo "The if statement evaluated to true";

} else {

 echo "The if statement evaluated to false";

}

Display:

The if statement evaluated to true

This is a lot to digest in one sitting, so let us step through the code, line by line.

• We first made a PHP variable called $number_three and set it equal to 3.
• In this example we compared a variable to an integer value. To do such a comparison we use "==",

which in English means "Is Equal To".
• $number_three is indeed Equal To 3 and so this statement will evaluate to true.
• All code that is contained between the opening curly brace "{" that follows the if statement and the

closing curly brace "}" will be executed when the if statement is true.
• The code contained within the else segment will not used.

Execute Else Code with False

On the other hand, if the if statement was false, then the code contained in the else segment would have
been executed. Note that the code within the if and else cannot both be executed, as the if statement cannot
evaluate to both true and false at one time! Here is what would happen if we changed to $number_three to
anything besides the number 3.

PHP Code:

$number_three = 421;

if ($number_three == 3) {

 echo "The if statement evaluated to true";

} else {

 echo "The if statement evaluated to false";

}

Display:

The if statement evaluated to false

The variable was set to 421, which is not equal to 3 and the if statement was false. As you can see, the
code segment contained within the else was used in this case.

PHP - Elseif

An if/else statement is great if you only need to check for one condition. However, what would you do if
you wanted to check if your $employee variable was the company owner Bob, the Vice President Ms. Tanner,
or a regular employee? To check for these different conditions you would need the elseif statement.

PHP - Elseif What is it?

An if statement is made up of the keyword "if" and a conditional statement (i.e. $name == "Ted"). Just like
an if statement, an elseif statement also contains a conditional statement, but it must be preceded by an if
statement. You cannot have an elseif statement without first having an if statement.

When PHP evaluates your If...elseif...else statement it will first see if the If statement is true. If that tests
comes out false it will then check the first elseif statement. If that is false it will either check the next elseif
statement, or if there are no more elseif statements, it will evaluate the else segment, if one exists (I don't think
I've ever used the word "if" so much in my entire life!). Let's take a look at a real world example.

PHP - Using Elseif with If...Else

Let's start out with the base case. Imagine we have a simpler version of the problem described above. We
simply want to find out if the employee is the Vice President Ms. Tanner. We only need an if else statement for
this part of the example.

PHP Code:

$employee = "Bob";

if($employee == "Ms. Tanner"){

 echo "Hello Ma'am";

} else {

 echo "Morning";

}

Now, if we wanted to also check to see if the big boss Bob was the employee we need to insert an elseif
clause.

PHP Code:

$employee = "Bob";

if($employee == "Ms. Tanner"){

 echo "Hello Ma'am";

} elseif($employee == "Bob"){

 echo "Good Morning Sir!";

}else {

 echo "Morning";

}

Display:

Good Morning Sir!

PHP first checked to see if $employee was equal to "Ms. Tanner", which evaluated to false. Next, PHP
checked the first elseif statement. $employee did in fact equal "Bob" so the phrase "Good Morning Sir!" was
printed out. If we wanted to check for more employee names we could insert more elseif statements!

Remember that an elseif statement cannot be used unless it is preceded by an if statement!

PHP Switch Statement

In the previous lessons we covered the various elements that make up an If Statement in PHP. However,
there are times when an if statement is not the most efficient way to check for certain conditions.

For example we might have a variable that stores travel destinations and you want to pack according to
this destination variable. In this example you might have 20 different locations that you would have to check
with a nasty long block of If/ElseIf/ElseIf/ElseIf/... statements. This doesn't sound like much fun to code, let's
see if we can do something different.

PHP Switch Statement: Speedy Checking

With the use of the switch statement you can check for all these conditions at once, and the great thing is
that it is actually more efficient programming to do this. A true win-win situation!

The way the Switch statement works is it takes a single variable as input and then checks it against all the
different cases you set up for that switch statement. Instead of having to check that variable one at a time, as it
goes through a bunch of If Statements, the Switch statement only has to check one time.

PHP Switch Statement Example

In our example the single variable will be $destination and the cases will be: Las Vegas, Amsterdam,
Egypt, Tokyo, and the Caribbean Islands.

PHP Code:

$destination = "Tokyo";

echo "Traveling to $destination
";

switch ($destination){

 case "Las Vegas":

 echo "Bring an extra $500";

 break;

 case "Amsterdam":

 echo "Bring an open mind";

 break;

 case "Egypt":

 echo "Bring 15 bottles of SPF 50 Sunscreen";

 break;

 case "Tokyo":

 echo "Bring lots of money";

 break;

 case "Caribbean Islands":

 echo "Bring a swimsuit";

 break;

}

http://www.tizag.com/phpT/if.php

Display:

Traveling to Tokyo
Bring lots of money

The value of $destination was Tokyo, so when PHP performed the switch operating on $destination in
immediately did a search for a case with the value of "Tokyo". It found it and proceeded to execute the code
that existed within that segment.

You might have noticed how each case contains a break; at the end of its code area. This break prevents
the other cases from being executed. If the above example did not have any break statements then all the
cases that follow Tokyo would have been executed as well. Use this knowledge to enhance the power of your
switch statements!

The form of the switch statement is rather unique, so spend some time reviewing it before moving on.
Note: Beginning programmers should always include the break; to avoid any unnecessary confusion.

PHP Switch Statement: Default Case

You may have noticed the lack of a place for code when the variable doesn't match our condition. The if
statement has the else clause and the switch statement has the default case.

It's usually a good idea to always include the default case in all your switch statements. Below is a
variation of our example that will result in none of the cases being used causing our switch statement to fall
back and use the default case. Note: there is no case before default.

PHP Code:

$destination = "New York";

echo "Traveling to $destination
";

switch ($destination){

 case "Las Vegas":

 echo "Bring an extra $500";

 break;

 case "Amsterdam":

 echo "Bring an open mind";

 break;

 case "Egypt":

 echo "Bring 15 bottles of SPF 50 Sunscreen";

 break;

 case "Tokyo":

 echo "Bring lots of money";

 break;

 case "Caribbean Islands":

 echo "Bring a swimsuit";

 break;

 default:

 echo "Bring lots of underwear!";

 break;

}

Display:

Traveling to New York
Bring lots of underwear!

Using PHP With HTML Forms

It is time to apply the knowledge you have obtained thus far and put it to real use. A very common
application of PHP is to have an HTML form gather information from a website's visitor and then use PHP to do
process that information. In this lesson we will simulate a small business's website that is implementing a very
simple order form.

Imagine we are an art supply store that sells brushes, paint, and erasers. To gather order information from
our prospective customers we will have to make a page with an HTML form to gather the customer's order.

Note: This is an oversimplified example to educate you how to use PHP to process HTML form
information. This example is not intended nor advised to be used on a real business website.

Creating the HTML Form

If you need a refresher on how to properly make an HTML form, check out the HTML Form Lesson before
continuing on.

We first create an HTML form that will let our customer choose what they would like to purchase. This file
should be saved as "order.html"
.

order.html Code:

<html><body>

<h4>Tizag Art Supply Order Form</h4>

<form>

<select>

<option>Paint</option>

<option>Brushes</option>

<option>Erasers</option>

</select>

Quantity: <input type="text" />

<input type="submit" />

</form>

</body></html>

Display:

Tizag Art Supply Order Form

Paint
Quantity:

Submit Query

Remember to review HTML Forms if you do not understand any of the above HTML code. Next we must
alter our HTML form to specify the PHP page we wish to send this information to. Also, we set the method to
"post".

http://www.tizag.com/htmlT/forms.php
http://www.tizag.com/htmlT/forms.php

order.html Code:

<html><body>

<h4>Tizag Art Supply Order Form</h4>

<form action="process.php" method="post">

<select name="item">

<option>Paint</option>

<option>Brushes</option>

<option>Erasers</option>

</select>

Quantity: <input name="quantity" type="text" />

<input type="submit" />

</form>

</body></html>

Now that our "order.html" is complete, let us continue on and create the "process.php" file which will
process the HTML form information.

PHP Form Processor

We want to get the "item" and "quantity" inputs that we have specified in our HTML form. Using an
associate array (this term is explained in the array lesson), we can get this information from the $_POST
associative array.

The proper way to get this information would be to create two new variables, $item and $quantity and set
them equal to the values that have been "posted". The name of this file is "process.php".

process.php Code:

<html><body>

<?php

$quantity = $_POST['quantity'];

$item = $_POST['item'];

echo "You ordered ". $quantity . " " . $item . ".
";

echo "Thank you for ordering from Tizag Art Supplies!";

?>

</body></html>

As you probably noticed, the name in $_POST['name'] corresponds to the name that we specified in our
HTML form.

Now try uploading the "order.html" and "process.php" files to a PHP enabled server and test them out. If
someone selected the item brushes and specified a quantity of 6, then the following would be displayed on
"process.php":

http://www.tizag.com/phpT/arrays.php

process.php Code:

You ordered 6 brushes.

Thank you for ordering from Tizag Art Supplies!

PHP & HTML Form Review

A lot of things were going on in this example. Let us step through it to be sure you understand what was
going on.

1. We first created an HTML form "order.html" that had two input fields specified, "item" and "quantity".
2. We added two attributes to the form tag to point to "process.php" and set the method to "post".
3. We had "process.php" get the information that was posted by setting new variables equal to the values

in the $_POST associative array.
4. We used the PHP echo function to output the customers order.

Remember, this lesson is only to teach you how to use PHP to get information from HTML forms. The
example on this page should not be used for a real business.

PHP - Functions

A function is just a name we give to a block of code that can be executed whenever we need it. This might
not seem like that big of an idea, but believe me, when you understand and use functions you will be able to
save a ton of time and write code that is much more readable!

For example, you might have a company motto that you have to display at least once on every webpage.
If you don't, then you get fired! Well, being the savvy PHP programmer you are, you think to yourself, "this
sounds like a situation where I might need functions."

Tip: Although functions are often thought of as an advanced topic for beginning programmers to learn, if
you take it slow and stick with it, functions can be just minor speedbump in your programming career. So don't
give up if you functions confuse you at first!

Creating Your First PHP Function

When you create a function, you first need to give it a name, like myCompanyMotto. It's with this function
name that you will be able to call upon your function, so make it easy to type and understand.

The actual syntax for creating a function is pretty self-explanatory, but you can be the judge of that. First,
you must tell PHP that you want to create a function. You do this by typing the keyword function followed by
your function name and some other stuff (which we'll talk about later).

Here is how you would make a function called myCompanyMotto. Note: We still have to fill in the code for
myCompanyMotto.

PHP Code:

<?php

function myCompanyMotto(){

}

?>

Note: Your function name can start with a letter or underscore "_", but not a number!
With a properly formatted function in place, we can now fill in the code that we want our function to

execute. Do you see the curly braces in the above example "{ }"? These braces define where our function's
code goes. The opening curly brace "{" tells php that the function's code is starting and a closing curly brace "}"
tells PHP that our function is done!

We want our function to print out the company motto each time it's called, so that sounds like it's a job for
the echo function!

PHP Code:

<?php

function myCompanyMotto(){

 echo "We deliver quantity, not quality!
";

}

?>

That's it! You have written your first PHP function from scratch! Notice that the code that appears within a
function is just the same as any other PHP code.

Using Your PHP Function

Now that you have completed coding your PHP function, it's time to put it through a test run. Below is a
simple PHP script. Let's do two things: add the function code to it and use the function twice.

PHP Code:

<?php

echo "Welcome to Tizag.com
";

echo "Well, thanks for stopping by!
";

echo "and remember...
";

?>

PHP Code with Function:

<?php

function myCompanyMotto(){

 echo "We deliver quantity, not quality!
";

}

echo "Welcome to Tizag.com
";

myCompanyMotto();

echo "Well, thanks for stopping by!
";

echo "and remember...
";

myCompanyMotto();

?>

Display:

Welcome to Tizag.com
We deliver quantity, not quality!
Well, thanks for stopping by!
and remember...
We deliver quantity, not quality!

Although this was a simple example, it's important to understand that there is a lot going on and there are
a lot of areas to make errors. When you are creating a function, follow these simple guidelines:

• Always start your function with the keyword function
• Remember that your function's code must be between the "{" and the "}"
• When you are using your function, be sure you spell the function name correctly
• Don't give up!

PHP Functions - Parameters

Another useful thing about functions is that you can send them information that the function can then use.
Our first function myCompanyMotto isn't all that useful because all it does, and ever will do, is print out a single,
unchanging string.

However, if we were to use parameters, then we would be able to add some extra functionality! A
parameter appears with the parentheses "()" and looks just like a normal PHP variable. Let's create a new
function that creates a custom greeting based off of a person's name.

Our parameter will be the person's name and our function will concatenate this name onto a greeting
string. Here's what the code would look like.

PHP Code with Function:

<?php

function myGreeting($firstName){

 echo "Hello there ". $firstName . "!
";

}

?>

When we use our myGreeting function we have to send it a string containing someone's name, otherwise
it will break. When you add parameters, you also add more responsibility to you, the programmer! Let's call our
new function a few times with some common first names.

PHP Code:

<?php

function myGreeting($firstName){

 echo "Hello there ". $firstName . "!
";

}

myGreeting("Jack");

myGreeting("Ahmed");

myGreeting("Julie");

myGreeting("Charles");

?>

Display:

Hello there Jack!
Hello there Ahmed!
Hello there Julie!
Hello there Charles!

It is also possible to have multiple parameters in a function. To separate multiple parameters PHP uses a
comma ",". Let's modify our function to also include last names.

PHP Code:

<?php

function myGreeting($firstName, $lastName){

 echo "Hello there ". $firstName ." ". $lastName ."!
";

}

myGreeting("Jack", "Black");

myGreeting("Ahmed", "Zewail");

myGreeting("Julie", "Roberts");

myGreeting("Charles", "Schwab");

?>

Display:

Hello there Jack Black!
Hello there Ahmed Zewail!
Hello there Julie Roberts!
Hello there Charles Schwab!

PHP Functions - Returning Values

Besides being able to pass functions information, you can also have them return a value. However, a
function can only return one thing, although that thing can be any integer, float, array, string, etc. that you
choose!

How does it return a value though? Well, when the function is used and finishes executing, it sort of
changes from being a function name into being a value. To capture this value you can set a variable equal to
the function. Something like:

• $myVar = somefunction();

Let's demonstrate this returning of a value by using a simple function that returns the sum of two integers.

PHP Code:

<?php

function mySum($numX, $numY){

 $total = $numX + $numY;

 return $total;

}

$myNumber = 0;

echo "Before the function, myNumber = ". $myNumber ."
";

$myNumber = mySum(3, 4); // Store the result of mySum in $myNumber

echo "After the function, myNumber = " . $myNumber ."
";

?>

Display:

Before the function, myNumber = 0
After the function, myNumber = 7

When we first print out the value of $myNumber it is still set to the original value of 0. However, when we
set $myNumber equal to the function mySum, $myNumber is set equal to mySum's result. In this case, the
result was 3 + 4 = 7, which was successfully stored into $myNumber and displayed in the second echo
statement!

PHP Functions - Practice Makes Perfect

If you are new to programming, then this lesson might or might not seem like overkill. If you are having a
hard time understanding lessons, the best piece of advice would be to do your best the first time, then be sure
to come back tomorrow and next week and see if it makes anymore sense. Chances are, after going through
this tutorial more than once, with breaks in between, this topic will be mastered.

PHP - Arrays

An array is a data structure that stores one or more values in a single value. For experienced
programmers it is important to note that PHP's arrays are actually maps (each key is mapped to a value).

PHP - A Numerically Indexed Array

If this is your first time seeing an array, then you may not quite understand the concept of an array.
Imagine that you own a business and you want to store the names of all your employees in a PHP variable.
How would you go about this?

It wouldn't make much sense to have to store each name in its own variable. Instead, it would be nice to
store all the employee names inside of a single variable. This can be done, and we show you how below.

PHP Code:

$employee_array[0] = "Bob";

$employee_array[1] = "Sally";

$employee_array[2] = "Charlie";

$employee_array[3] = "Clare";

In the above example we made use of the key / value structure of an array. The keys were the numbers
we specified in the array and the values were the names of the employees. Each key of an array represents a
value that we can manipulate and reference. The general form for setting the key of an array equal to a value
is:

• $array[key] = value;

If we wanted to reference the values that we stored into our array, the following PHP code would get the
job done.

PHP Code:

echo "Two of my employees are "

. $employee_array[0] . " & " . $employee_array[1];

echo "
Two more employees of mine are "

. $employee_array[2] . " & " . $employee_array[3];

Display:

Two of my employees are Bob & Sally
Two more employees of mine are Charlie & Clare

PHP arrays are quite useful when used in conjunction with loops, which we will talk about in a later lesson.
Above we showed an example of an array that made use of integers for the keys (a numerically indexed array).
However, you can also specify a string as the key, which is referred to as an associative array.

PHP - Associative Arrays

In an associative array a key is associated with a value. If you wanted to store the salaries of your
employees in an array, a numerically indexed array would not be the best choice. Instead, we could use the
employees names as the keys in our associative array, and the value would be their respective salary.

PHP Code:

$salaries["Bob"] = 2000;

$salaries["Sally"] = 4000;

$salaries["Charlie"] = 600;

$salaries["Clare"] = 0;

echo "Bob is being paid - $" . $salaries["Bob"] . "
";

echo "Sally is being paid - $" . $salaries["Sally"] . "
";

echo "Charlie is being paid - $" . $salaries["Charlie"] . "
";

echo "Clare is being paid - $" . $salaries["Clare"];

Display:

Bob is being paid - $2000
Sally is being paid - $4000
Charlie is being paid - $600
Clare is being paid - $0

Once again, the usefulness of arrays will become more apparent once you have knowledge of for and
while loops.

http://www.tizag.com/phpT/forloop.php
http://www.tizag.com/phpT/whileloop.php

PHP - While Loop

Repetitive tasks are always a burden to us. Deleting spam email, sealing 50 envelopes, and going to work
are all examples of tasks that are repeated. The nice thing about programming is that you can avoid such
repetitive tasks with a little bit of extra thinking. Most often these repetitive tasks are conquered in the loop.

The idea of a loop is to do something over and over again until the task has been completed. Before we
show a real example of when you might need one, let's go over the structure of the PHP while loop.

Simple While Loop Example

The function of the while loop is to do a task over and over as long as the specified conditional statement
is true. This logical check is the same as the one that appears in a PHP if statement to determine if it is true or
false. Here is the basic structure of a PHP while loop:

Pseudo PHP Code:

while (conditional statement is true){

 //do this code;

}

This isn't valid PHP code, but it displays how the while loop is structured. Here is the break down of how a
while loop functions when your script is executing:

1. The conditional statement is checked. If it is true, then (2) occurs. If it is false, then (4) occurs.
2. The code within the while loop is executed.
3. The process starts again at (1). Effectively "looping" back.
4. If the conditional statement is false, then the code within is not executed and there is no more looping.

The code following the while loop is then executed like normal.

A Real While Loop Example

Imagine that you are running an art supply store. You would like to print out the price chart for number of
brushes and total cost. You sell brushes at a flat rate, but would like to display how much different quantities
would cost. This will save your customers from having to do the mental math themselves.

You know that a while loop would be perfect for this repetitive and boring task. Here is how to go about
doing it.

http://www.tizag.com/phpT/if.php

Pseudo PHP Code:

$brush_price = 5;

$counter = 10;

echo "<table border=\"1\" align=\"center\">";

echo "<tr><th>Quantity</th>";

echo "<th>Price</th></tr>";

while ($counter <= 100) {

 echo "<tr><td>";

 echo $counter;

 echo "</td><td>";

 echo $brush_price * $counter;

 echo "</td></tr>";

 $counter = $counter + 10;

}

echo "</table>";

Display:
Quantity Price
10 50
20 100
30 150
40 200
50 250
60 300
70 350
80 400
90 450
100 500

Pretty neat, huh? The loop created a new table row and its respective entries for each quantity, until our
counter variable grew past the size of 100. When it grew past 100 our conditional statement failed and the loop
stopped being used. Let's review what is going on.

1. We first made a $brush_price and $counter variable and set them equal to our desired values.
2. The table was set up with the beginning table tag and the table headers.
3. The while loop conditional statement was checked, and $counter (10) was indeed smaller or equal to

100.
4. The code inside the while loop was executed, creating a new table row for the price of 10 brushes.
5. We then added 10 to $counter to bring the value to 20.
6. The loop started over again at step 3, until $counter grew larger than 100.
7. After the loop had completed, we ended the table.

You may have noticed that we placed slashes infront the quotations in the first echo statement. You have
to place slashes before quotations if you do not want the quotation to act as the end of the echo statement.
This is called escaping a character and it is discussed in our PHP Strings lesson.

With proper use of loops you can complete large tasks with great ease.

http://www.tizag.com/phpT/strings.php

PHP - For Loop

The for loop is simply a while loop with a bit more code added to it. The common tasks that are covered by
a for loop are:

1. Set a counter variable to some initial value.
2. Check to see if the conditional statement is true.
3. Execute the code within the loop.
4. Increment a counter at the end of each iteration through the loop.

The for loop allows you to define these steps in one easy line of code. It may seem to have a strange
form, so pay close attention to the syntax used!

For Loop Example

Let us take the example from the while loop lesson and see how it could be done in a for loop. The basic
structure of the for loop is as follows:

Pseudo PHP Code:

for (initialize a counter; conditional statement; increment a counter){

 do this code;

}

Notice how all the steps of the loop are taken care of in the for loop statement. Each step is separated by
a semicolon: initiliaze counter, conditional statement, and the counter increment. A semicolon is needed
because these are separate expressions. However, notice that a semicolon is not needed after the "increment
counter" expression.

Here is the example of the brush prices done with a for loop .

PHP Code:

$brush_price = 5;

echo "<table border=\"1\" align=\"center\">";

echo "<tr><th>Quantity</th>";

echo "<th>Price</th></tr>";

for ($counter = 10; $counter <= 100; $counter += 10) {

 echo "<tr><td>";

 echo $counter;

 echo "</td><td>";

 echo $brush_price * $counter;

 echo "</td></tr>";

}

echo "</table>";

http://www.tizag.com/phpT/whileloop.php

Display:
Quantity Price
10 50
20 100
30 150
40 200
50 250
60 300
70 350
80 400
90 450
100 500

It is important to note that both the for loop and while loop implementation of the price chart table are both
OK at getting the job done. However, the for loop is somewhat more compact and would be preferable in this
situation. In later lessons we will see where the while loop should be used instead of the for loop.

PHP For Each Loop

Imagine that you have an associative array that you want to iterate through. PHP provides an easy way to
use every element of an array with the Foreach statement.

In plain english this statement will do the following:

• For each item in the specified array execute this code.

While a For Loop and While Loop will continue until some condition fails, the For Each loop will continue
until it has gone through every item in the array.

PHP For Each: Example

We have an associative array that stores the names of people in our company as the keys with the values
being their age. We want to know how old everyone is at work so we use a Foreach loop to print out everyone's
name and age.

PHP Code:

$employeeAges;

$employeeAges["Lisa"] = "28";

$employeeAges["Jack"] = "16";

$employeeAges["Ryan"] = "35";

$employeeAges["Rachel"] = "46";

$employeeAges["Grace"] = "34";

foreach($employeeAges as $key => $value){

 echo "Name: $key, Age: $value
";

}

Display:

Name: Lisa, Age: 28
Name: Jack, Age: 16
Name: Ryan, Age: 35
Name: Rachel, Age: 46
Name: Grace, Age: 34

The syntax of the foreach statement is a little strange, so let's talk about it some.

Foreach Syntax: $something as $key => $value

This crazy statement roughly translates into: For each element of the $employeeAges associative array I
want to refer to the key as $key and the value as $value.

The operator "=>" represents the relationship between a key and value. You can imagine that the key
points => to the value. In our example we named the key $key and the value $value. However, it might be
easier to think of it as $name and $age. Below our example does this and notice how the output is identical
because we only changed the variable names that refer to the keys and values.

http://www.tizag.com/phpT/arrays.php
http://www.tizag.com/phpT/forloop.php
http://www.tizag.com/phpT/whileloop.php

PHP Code:

$employeeAges;

$employeeAges["Lisa"] = "28";

$employeeAges["Jack"] = "16";

$employeeAges["Ryan"] = "35";

$employeeAges["Rachel"] = "46";

$employeeAges["Grace"] = "34";

foreach($employeeAges as $name => $age){

 echo "Name: $name, Age: $age
";

}

Display:

Name: Lisa, Age: 28
Name: Jack, Age: 16
Name: Ryan, Age: 35
Name: Rachel, Age: 46
Name: Grace, Age: 34

PHP - Do While Loop

A "do while" loop is a slightly modified version of the while loop. If you recal from one of the previous
lessons on While Loops the conditional statement is checked comes back true then the code within the while
loop is executed. If the conditional statement is false then the code within the loop is not executed.

On the other hand, a do-while loop always executes its block of code at least once. This is because the
conditional statement is not checked until after the contained code has been executed.

PHP - While Loop and Do While Loop Contrast

A simple example that illustrates the difference between these two loop types is a conditional statement
that is always false. First the while loop:

PHP Code:

$cookies = 0;

while($cookies > 1){

 echo "Mmmmm...I love cookies! *munch munch munch*";

}

Display:

As you can see, this while loop's conditional statement failed (0 is not greater than 1), which means the
code within the while loop was not executed. Now, can you guess what will happen with a do-while loop?

PHP Code:

$cookies = 0;

do {

 echo "Mmmmm...I love cookies! *munch munch munch*";

} while ($cookies > 1);

Display:

Mmmmm...I love cookies! *munch munch munch*

The code segment "Mmmm...I love cookies!" was executed even though the conditional statement was
false. This is because a do-while loop first do's and secondly checks the while condition!

Chances are you will not need to use a do while loop in most of your PHP programming, but it is good to
know it's there!

http://www.tizag.com/phpT/whileloop.php

PHP - POST & GET

Recall from the PHP Forms Lesson where we used an HTML form and sent it to a PHP web page for
processing. In that lesson we opted to use the the post method for submitting, but we could have also chosen
the get method. This lesson will review both transferring methods.

POST - Review

In our PHP Forms Lesson we used the post method. This is what the pertinent line of HTML code looked
like:

HTML Code Excerpt:

<form action="process.php" method="post">

<select name="item">

...

<input name="quantity" type="text" />

This HTML code specifies that the form data will be submitted to the "process.php" web page using the
POST method. The way that PHP does this is to store all the "posted" values into an associative array called
"$_POST". Be sure to take notice the names of the form data names, as they represent the keys in the
"$_POST" associative array.

Now that you know about associative arrays, the PHP code from "process.php" should make a litte more
sense.

PHP Code Excerpt:

$quantity = $_POST['quantity'];

$item = $_POST['item'];

The form names are used as the keys in the associative array, so be sure that you never have two input
items in your HTML form that have the same name. If you do, then you might see some problems arise.

http://www.tizag.com/phpT/forms.php
http://www.tizag.com/phpT/forms.php

PHP - GET

As we mentioned before, the alternative to the post method is get. If we were to change our HTML form to
the get method, it would look like this:

HTML Code Excerpt:

<form action="process.php" method="get">

<select name="item">

...

<input name="quantity" type="text" />

The get method is different in that it passes the variables along to the "process.php" web page by
appending them onto the end of the URL. The URL, after clicking submit, would have this added on to the end
of it:

"?item=##&quantity=##"
The question mark "?" tells the browser that the following items are variables. Now that we changed the

method of sending information on "order.html", we must change the "process.php" code to use the "$_GET"
associative array.

PHP Code Excerpt:

$quantity = $_GET['quantity'];

$item = $_GET['item'];

After changing the array name the script will function properly. Using the get method displays the variable
information to your visitor, so be sure you are not sending password information or other sensitive items with
the get method. You would not want your visitors seeing something they are not supposed to!

Security Precautions

Whenever you are taking user input and using you need to be sure that the input is safe. If you are going
to insert the data into a MySQL database, then you should be sure you have thought about preventing MySQL
Injection. If you are going to make a user's input available to the public, then you should think about PHP
htmlentities.

http://www.tizag.com/mysqlTutorial/mysql-php-sql-injection.php
http://www.tizag.com/mysqlTutorial/mysql-php-sql-injection.php
http://www.tizag.com/phpT/php-htmlentities.php
http://www.tizag.com/phpT/php-htmlentities.php

PHP htmlentities Function

Whenever you allow your users to submit text to your website, you need to be careful that you don't leave
any security holes open for malicious users to exploit. If you are ever going to allow user submitted text to be
visible by the public you should consider using the htmlentities function to prevent them from running html code
and scripts that may be harmful to your visitors.

PHP - Converting HTML into Entities

The htmlentities function takes a string and returns the same string with HTML converted into HTML
entities. For example, the string "<script>" would be converted to "<script>".

By converting the < and > into entities, it prevents the browser from using it as an HTML element and it
prevents the code from running if you were to display some user's input on your website.

This may seem a little complicated, but if you think of the way a browser works, in separate stages, it
becomes a little easier. Let's look at the way the function htmlentities changes the data at three different levels:
in PHP, in raw HTML and in the web browser. The sample string is a bad script that will redirect visitors to the
malicious user's own website.

PHP Code:

// An imaginary article submission from a bad user

// it will redirect anyone to example.com if the code is run in a browser

$userInput = "I am going to hax0r your site, hahaha!

 <script type='text/javascript'>

 window.location = 'http://www.example.com/'

 </script>'";

//Lets make it safer before we use it

$userInputEntities = htmlentities($userInput);

//Now we can display it

echo $userInputEntities;

The HTML output of the above script would be as follows:

Safe Raw HTML Code:

I am going to hax0r your site, hahaha!

 <script type='text/javascript'>

 window.location = 'http://www.example.com/'

 </script>'

If we had not used htmlentities to convert any HTML code into safe entities, this is what the raw HTML
code would be and it would have redirect a visitor to example.com.

http://www.tizag.com/htmlT/entities.php
http://www.tizag.com/htmlT/entities.php

Dangerous Raw HTML Code:

I am going to hax0r your site, hahaha!

 <script type='text/javascript'>

 window.location = 'http://www.example.com/'

 </script>'

Those two HTML code examples are what you would see if you were to view source on the web page.
However, if you were just viewing the output normally in your browser you would see the following.

Safe Display:

I am going to hax0r your site, hahaha! <script type='text/javascript'> window.location =
'http://www.example.com/' </script>'

Dangerous Display:

You'd see whatever spammer site that the malicious user had sent you to. Probably some
herbal supplement site or weight loss pills would be displayed.

When Would You Use htmlentities?

Anytime you allow users to submit content to your website, that other visitors can see, you should
consider removing the ability to let them use HTML. Although this will remove a lot of cool things that your
users can do, like making heavily customized content, it will prevent your site from a lot of common attacks.
With some custom coding you can just remove specific tags from running, but that is beyond the scope of this
lesson.

Just remember, that when allowing users to submit content to your site you are also giving them access to
your website. Be sure you take the proper precautions.

PHP - Files

Manipulating files is a basic necessity for serious programmers and PHP gives you a great deal of tools
for creating, uploading, and editing files.

This section of the PHP tutorial is completely dedicated to how PHP can interact with files. After
completing this section you should have a solid understanding of all types of file manipulation in PHP!

PHP - Files: Be Careful

When you are manipulating files you must be very careful because you can do a lot of damage if you do
something wrong. Common errors include editing the wrong file, filling a hard-drive with garbage data, and
accidentally deleting a file's contents.

It is our hope that you will be able to avoid these and other slipups after reading this tutorial. However, we
know that there are so many places where code can take a wrong turn, so we urge you to take extra care when
dealing with files in PHP.

PHP - Files: Overview

The presentation of the file lessons will begin with how to create, open, and close a file. After establishing
those basics, we will then cover other important file tasks, such as: read, write, append, truncate, and
uploading files with PHP.

PHP - File Create

Before you can do anything with a file it has to exist! In this lesson you will learn how to create a file using
PHP.

PHP - Creating Confusion

In PHP, a file is created using a command that is also used to open files. It may seem a little confusing,
but we'll try to clarify this conundrum.

In PHP the fopen function is used to open files. However, it can also create a file if it does not find the file
specified in the function call. So if you use fopen on a file that does not exist, it will create it, given that you
open the file for writing or appending (more on this later).

PHP - How to Create a File

The fopen function needs two important pieces of information to operate correctly. First, we must supply it
with the name of the file that we want it to open. Secondly, we must tell the function what we plan on doing with
that file (i.e. read from the file, write information, etc).

Since we want to create a file, we must supply a file name and tell PHP that we want to write to the file.
Note: We have to tell PHP we are writing to the file, otherwise it will not create a new file.

PHP Code:

$ourFileName = "testFile.txt";

$ourFileHandle = fopen($ourFileName, 'w') or die("can't open file");

fclose($ourFileHandle);

The file "testFile.txt" should be created in the same directory where this PHP code resides. PHP will see
that "testFile.txt" does not exist and will create it after running this code. There's a lot of information in those
three lines of code, let's make sure you understand it.

1. $ourFileName = "testFile.txt";

Here we create the name of our file, "testFile.txt" and store it into a PHP String variable
$ourFileName.

2. $ourFileHandle = fopen($ourFileName, 'w') or die("can't open file");

This bit of code actually has two parts. First we use the function fopen and give it two arguments:
our file name and we inform PHP that we want to write by passing the character "w".

Second, the fopen function returns what is called a file handle, which will allow us to manipulate
the file. We save the file handle into the $ourFileHandle variable. We will talk more about file handles
later on.

3. fclose($ourFileHandle);

We close the file that was opened. fclose takes the file handle that is to be closed. We will talk
more about this more in the file closing lesson.

http://www.tizag.com/phpT/strings.php

PHP - Permissions

If you are trying to get this program to run and you are having errors, you might want to check that you
have granted your PHP file access to write information to the hard drive. Setting permissions is most often
done with the use of an FTP program to execute a command called CHMOD. Use CHMOD to allow the PHP
file to write to disk, thus allowing it to create a file.

In the near future Tizag.com will have a more in-depth tutorial on how to use CHMOD to set file
permissions.

PHP - File Open

In the previous lesson we used the function fopen to create a new file. In this lesson we will be going into
the details of this important function and see what it has to offer.

PHP - Different Ways to Open a File

For many different technical reasons, PHP requires you to specify your intentions when you open a file.
Below are the three basic ways to open a file and the corresponding character that PHP uses.

• Read: 'r'

Open a file for read only use. The file pointer begins at the front of the file.

• Write: 'w'

Open a file for write only use. In addition, the data in the file is erased and you will begin writing data at the
beginning of the file. This is also called truncating a file, which we will talk about more in a later lesson. The file
pointer begins at the start of the file.

• Append: 'a'

Open a file for write only use. However, the data in the file is preserved and you begin will writing data at
the end of the file. The file pointer begins at the end of the file.

A file pointer is PHP's way of remembering its location in a file. When you open a file for reading, the file
pointer begins at the start of the file. This makes sense because you will usually be reading data from the front
of the file.

However, when you open a file for appending, the file pointer is at the end of the file, as you most likely
will be appending data at the end of the file. When you use reading or writing functions they begin at the
location specified by the file pointer.

PHP - Explanation of Different Types of fopen

These three basic ways to open a file have distinct purposes. If you want to get information out of a file,
like search an e-book for the occurrences of "cheese", then you would open the file for read only.

If you wanted to write a new file, or overwrite an existing file, then you would want to open the file with the
"w" option. This would wipe clean all existing data within the file.

If you wanted to add the latest order to your "orders.txt" file, then you would want to open it to append the
data on to the end. This would be the "a" option.

PHP - File Open: Advanced

There are additional ways to open a file. Above we stated the standard ways to open a file. However, you
can open a file in such a way that reading and writing is allowable! This combination is done by placing a plus
sign "+" after the file mode character.

• Read/Write: 'r+'

Opens a file so that it can be read from and written to. The file pointer is at the beginning of the file.

• Write/Read: 'w+'

This is exactly the same as r+, except that it deletes all information in the file when the file is opened.

• Append: 'a+'

This is exactly the same as r+, except that the file pointer is at the end of the file.

PHP - File Open: Cookie Cutter

Below is the correct form for opening a file with PHP. Replace the (X) with one of the options above (i.e. r,
w, a, etc).

Pseudo PHP Code:

$ourFileName = "testFile.txt";

$fh = fopen($ourFileName, 'X') or die("Can't open file");

fclose($fh);

PHP - File Open: Summary

You can open a file in many different ways. You can delete everything and begin writing on a clean slate,
you can add to existing data, and you can simply read information from a file. In later lessons we will go into
greater detail on how each of these different ways to open a file is used in the real world and give some helpful
examples.

PHP - File Close

The next logical step after you have opened a file and finished your business with it is to close that file
down. You don't want an open file running around on your server taking up resources and causing mischief!

PHP - File Close Description

In PHP it is not system critical to close all your files after using them because the server will close all files
after the PHP code finishes execution. However the programmer is still free to make mistakes (i.e. editing a file
that you accidentally forgot to close). You should close all files after you have finished with them because it's a
good programming practice and because we told you to!

PHP - File Close Function

In a previous tutorial, we had a call to the function fclose to close down a file after we were done with it.
Here we will repeat that example and discuss the importance of closing a file.

PHP Code:

$ourFileName = "testFile.txt";

$ourFileHandle = fopen($ourFileName, 'w') or die("can't open file");

fclose($ourFileHandle);

The function fclose requires the file handle that we want to close down. In our example we set our variable
"$fileHandle" equal to the file handle returned by the fopen function.

After a file has been closed down with fclose it is impossible to read, write or append to that file unless it is
once more opened up with the fopen function.

PHP - File Write

Now that you know how to open and close a file, lets get on to the most useful part of file manipulation,
writing! There is really only one main function that is used to write and it's logically called fwrite.

PHP - File Open: Write

Before we can write information to our test file we have to use the function fopen to open the file for
writing.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'w');

PHP - File Write: fwrite Function

We can use php to write to a text file. The fwrite function allows data to be written to any type of file.
Fwrite's first parameter is the file handle and its second parameter is the string of data that is to be written. Just
give the function those two bits of information and you're good to go!

Below we are writing a couple of names into our test file testFile.txt and separating them with a carriaged
return.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'w') or die("can't open file");

$stringData = "Bobby Bopper\n";

fwrite($fh, $stringData);

$stringData = "Tracy Tanner\n";

fwrite($fh, $stringData);

fclose($fh);

The $fh variable contains the file handle for testFile.txt. The file handle knows the current file pointer,
which for writing, starts out at the beginning of the file.

We wrote to the file testFile.txt twice. Each time we wrote to the file we sent the string $stringData that first
contained Bobby Bopper and second contained Tracy Tanner. After we finished writing we closed the file using
the fclose function.

If you were to open the testFile.txt file in NOTEPAD it would look like this:

Contents of the testFile.txt File:

Bobby Bopper
Tracy Tanner

PHP - File Write: Overwriting

Now that testFile.txt contains some data we can demonstrate what happens when you open an existing
file for writing. All the data contained in the file is wiped clean and you start with an empty file. In this example
we open our existing file testFile.txt and write some new data into it.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'w') or die("can't open file");

$stringData = "Floppy Jalopy\n";

fwrite($fh, $stringData);

$stringData = "Pointy Pinto\n";

fwrite($fh, $stringData);

fclose($fh);

If you now open the testFile.txt file you will see that Bobby and Tracy have both vanished, as we
expected, and only the data we just wrote is present.

Contents of the testFile.txt File:

Floppy Jalopy
Pointy Pinto

In the next lesson we will show you how to get information out of a file by using PHP's read data functions!

PHP - File Read

My apologies for taking so long to actually get to the point where you get information from files. In this
lesson we will teach you how to read data from a file using various PHP functions.

PHP - File Open: Read

Before we can read information from a file we have to use the function fopen to open the file for reading.
Here's the code to read-open the file we created in the PHP File Write lessons.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'r');

The file we created in the last lesson was named "testFile.txt". Your PHP script that you are writing should
reside in the same directory as "text.txt". Here are the contents of our file from File Write.

testFile.txt Contents:

Floppy Jalopy
Pointy Pinto

Now that the file is open, with read permissions enabled, we can get started!

PHP - File Read: fread Function

The fread function is the staple for getting data out of a file. The function requires a file handle, which we
have, and an integer to tell the function how much data, in bytes, it is supposed to read.

One character is equal to one byte. If you wanted to read the first five characters then you would use five
as the integer.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'r');

$theData = fread($fh, 5);

fclose($fh);

echo $theData;

Display:

Flopp

The first five characters from the testFile.txt file are now stored inside $theData. You could echo this
string, $theData, or write it to another file.

If you wanted to read all the data from the file, then you need to get the size of the file. The filesize
function returns the length of a file, in bytes, which is just what we need! The filesize function requires the name
of the file that is to be sized up.

http://www.tizag.com/phpT/filewrite.php

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'r');

$theData = fread($fh, filesize($myFile));

fclose($fh);

echo $theData;

Display:

Floppy Jalopy Pointy Pinto

Note: It is all on one line because our "testFile.txt" file did not have a
 tag to create an HTML line
break. Now the entire contents of the testFile.txt file is stored in the string variable $theData.

PHP - File Read: gets Function

PHP also lets you read a line of data at a time from a file with the gets function. This can or cannot be
useful to you, the programmer. If you had separated your data with new lines then you could read in one
segment of data at a time with the gets function.

Lucky for us our "testFile.txt" file is separated by new lines and we can utilize this function.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'r');

$theData = fgets($fh);

fclose($fh);

echo $theData;

testFile.txt Contents:

Floppy Jalopy

The fgets function searches for the first occurrence of "\n" the newline character. If you did not write
newline characters to your file as we have done in File Write, then this function might not work the way you
expect it to.

http://www.tizag.com/phpT/filewrite.php

PHP - File Delete

You know how to create a file. You know how to open a file in an assortment of different ways. You even
know how to read and write data from a file!

Now it's time to learn how to destroy (delete) files. In PHP you delete files by calling the unlink function.

PHP - File Unlink

When you view the contents of a directory you can see all the files that exist in that directory because the
operating system or application that you are using displays a list of filenames. You can think of these filenames
as links that join the files to the directory you are currently viewing.

If you unlink a file, you are effectively causing the system to forget about it or delete it!
Before you can delete (unlink) a file, you must first be sure that it is not open in your program. Use the

fclose function to close down an open file.

PHP - Unlink Function

Remember from the PHP File Create lesson that we created a file named testFile.txt.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'w') or die("can't open file");

fclose($fh);

Now to delete testFile.txt we simply run a PHP script that is located in the same directory. Unlink just
needs to know the name of the file to start working its destructive magic.

PHP Code:

$myFile = "testFile.txt";

unlink($myFile);

The testFile.txt should now be removed.

PHP - Unlink: Safety First!

With great power comes a slough of potential things you can mess up! When you are performing the
unlink function be sure that you are deleting the right file!

http://www.tizag.com/phpT/filecreate.php

PHP - File Append

So far we have learned how to open, close, read, and write to a file. However, the ways in which we have
written to a file so far have caused the data that was stored in the file to be deleted. If you want to append to a
file, that is, add on to the existing data, then you need to open the file in append mode.

PHP - File Open: Append

If we want to add on to a file we need to open it up in append mode. The code below does just that.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'a');

If we were to write to the file it would begin writing data at the end of the file.

PHP - File Write: Appending Data

Using the testFile.txt file we created in the File Write lesson , we are going to append on some more data.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'a') or die("can't open file");

$stringData = "New Stuff 1\n";

fwrite($fh, $stringData);

$stringData = "New Stuff 2\n";

fwrite($fh, $stringData);

fclose($fh);

You should noticed that the way we write data to the file is exactly the same as in the Write lesson. The
only thing that is different is that the file pointer is placed at the end of the file in append mode, so all data is
added to the end of the file.

The contents of the file testFile.txt would now look like this:

Contents of the testFile.txt File:

Floppy Jalopy
Pointy Pinto
New Stuff 1
New Stuff 2

http://www.tizag.com/phpT/filewrite.php
http://www.tizag.com/phpT/filewrite.php

PHP - Append: Why Use It?

The above example may not seem very useful, but appending data onto a file is actually used everyday.
Almost all web servers have a log of some sort. These various logs keep track of all kinds of information, such
as: errors, visitors, and even files that are installed on the machine.

A log is basically used to document events that occur over a period of time, rather than all at once. Logs: a
perfect use for append!

PHP - File Truncate

As we have mentioned before, when you open a file for writing with the paramater 'w' it completely wipes
all data from that file. This action is also referred to as "truncating" a file. Truncate literally means to shorten.

PHP - File Open: Truncate

To erase all the data from our testFile.txt file we need to open the file for normal writing. All existing data
within testFile.txt will be lost.

PHP Code:

$myFile = "testFile.txt";

$fh = fopen($myFile, 'w');

fclose($fh);

PHP - Truncate: Why Use It?

Truncating is most often used on files that contain data that will only be used for a short time, before
needing to be replaced. These type of files are most often referred to as temporary files.

For example, you could create an online word processor that automatically saves every thirty seconds.
Every time it saves it would take all the data that existed within some HTML form text box and save it to the
server. This file, say tempSave.txt, would be truncated and overwritten with new, up-to-date data every thirty
seconds.

This might not be the most efficient program, but it is a nice usage of truncate.

PHP - File Upload

A very useful aspect of PHP is its ability to manage file uploads to your server. Allowing users to upload a
file to your server opens a whole can of worms, so please be careful when enabling file uploads.

PHP - File Upload: HTML Form

Before you can use PHP to manage your uploads, you must first build an HTML form that lets users select
a file to upload. See our HTML Form lesson for a more in-depth look at forms.

HTML Code:

<form enctype="multipart/form-data" action="uploader.php" method="POST">

<input type="hidden" name="MAX_FILE_SIZE" value="100000" />

Choose a file to upload: <input name="uploadedfile" type="file" />

<input type="submit" value="Upload File" />

</form>

Here is a brief description of the important parts of the above code:

• enctype="multipart/form-data" - Necessary for our to-be-created PHP file to function properly.
• action="uploader.php" - The name of our PHP page that will be created, shortly.
• method="POST" - Informs the browser that we want to send information to the server using POST.
• input type="hidden" name="MA... - Sets the maximum allowable file size, in bytes, that can be

uploaded. This safety mechanism is easily bypassed and we will show a solid backup solution in PHP.
We have set the max file size to 100KB in this example.

• input name="uploadedfile" - uploadedfile is how we will access the file in our PHP script.

Save that form code into a file and call it upload.html. If you view it in a browser it should look like this:

Display:

Choose a file to upload:
Upload File

After the user clicks submit, the data will be posted to the server and the user will be redirected to
uploader.php. This PHP file is going to process the form data and do all the work.

http://www.tizag.com/htmlT/forms.php

PHP - File Upload: What's the PHP Going to Do?

Now that we have the right HTML form we can begin to code the PHP script that is going to handle our
uploads. Typically, the PHP file should make a key decision with all uploads: keep the file or throw it away. A
file might be thrown away from many reasons, including:

• The file is too large and you do not want to have it on your server.
• You wanted the person to upload a picture and they uploaded something else, like an executable file

(.exe).
• There were problems uploading the file and so you can't keep it.

This example is very simple and omits the code that would add such functionality.

PHP - File Upload: uploader.php

When the uploader.php file is executed, the uploaded file exists in a temporary storage area on the server.
If the file is not moved to a different location it will be destroyed! To save our precious file we are going to need
to make use of the $_FILES associative array.

The $_FILES array is where PHP stores all the information about files. There are two elements of this
array that we will need to understand for this example.

• uploadedfile - uploadedfile is the reference we assigned in our HTML form. We will need this to tell
the $_FILES array which file we want to play around with.

• $_FILES['uploadedfile']['name'] - name contains the original path of the user uploaded file.
• $_FILES['uploadedfile']['tmp_name'] - tmp_name contains the path to the temporary file that resides

on the server. The file should exist on the server in a temporary directory with a temporary name.

Now we can finally start to write a basic PHP upload manager script! Here is how we would get the
temporary file name, choose a permanent name, and choose a place to store the file.

PHP Code:

// Where the file is going to be placed

$target_path = "uploads/";

/* Add the original filename to our target path.

Result is "uploads/filename.extension" */

$target_path = $target_path . basename($_FILES['uploadedfile']['name']);

$_FILES['uploadedfile']['tmp_name'];

NOTE: You will need to create a new directory in the directory where uploader.php resides, called
"uploads", as we are going to be saving files there.

We now have all we need to successfully save our file to the server. $target_path contains the path where
we want to save our file to.

http://www.tizag.com/phpT/arrays.php

PHP - File Upload: move_uploaded_file Function

Now all we have to do is call the move_uploaded_file function and let PHP do its magic. The
move_uploaded_file function needs to know 1) The path of the temporary file (check!) 2) The path where it is to
be moved to (check!).

PHP Code:

$target_path = "uploads/";

$target_path = $target_path . basename($_FILES['uploadedfile']['name']);

if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target_path)) {

 echo "The file ". basename($_FILES['uploadedfile']['name']).

 " has been uploaded";

} else{

 echo "There was an error uploading the file, please try again!";

}

If the upload is successful, then you will see the text "The file filename has been uploaded". This is
because $move_uploaded_file returns true if the file was moved, and false if it had a problem.

If there was a problem then the error message "There was an error uploading the file, please try again!"
would be displayed.

PHP - File Upload: Safe Practices!

Note: This script is for education purposes only. We do not recommend placing this on a web page
viewable to the public.

These few lines of code we have given you will allow anyone to upload data to your server. Because of
this, we recommend that you do not have such a simple file uploader available to the general public. Otherwise,
you might find that your server is filled with junk or that your server's security has been compromised.

We hope you enjoyed learning about how to work with uploading files with PHP. In the near future we will
be adding an advanced lesson that will include more security and additional features!

PHP - String Position - strpos

Being able to manipulate strings is a valuable skill, espcially in PHP. You'll most likely come across a
programming problem that requires you to find some data in a string. The beginning of a lot of your string
manipulation expertise will begin with the strpos function, which allows you to find data in your string.

Searching a String with strpos

The way strpos works is it takes some string you want to search in as its first argument and another string,
which is what you are actually searching for, as the second argument. If the function can find a search match,
then it will return the position of the first match. However, if it can't find a match it will return false.

To make this function crystal clear, lets search a numbered, in-order string, for the number five.

PHP Code:

$numberedString = "1234567890"; // 10 numbers from 1 to 0

$fivePos = strpos($numberedString, "5");

echo "The position of 5 in our string was $fivePos";

Display:

The position of 5 in our string was 4

Notice that the position is 4, which may seem confusing at first, until you realize that PHP starts counting
from 0.

• The number 1 - Position 0 - No match
• The number 2 - Position 1 - No match
• The number 3 - Position 2 - No match
• The number 4 - Position 3 - No match
• The number 5 - Position 4 - Match

Although we only searched for a single character, you can use this function to search for a string with any
number of characters. Also, it is important to note that this function will return the position of the start of the first
match. So if we had searched the same string for "567890" we would again find a match and position 4
because that is where the match starts.

Finding All Occurrences in a String with Offset

One of the limitations of strpos is that it only returns the position of the very first match. If there are 5,000
other matches in the string you would be none the wiser, unless you take action!

There is a third (optional) argument to strpos that will let you specify where to begin your search of the
string. If you were to store the position of the last match and use that + 1 as an offset, you would skip over the
first match and be find the next one.

PHP Code:

$numberedString = "1234567890123456789012345678901234567890";

$fivePos = strpos($numberedString, "5");

echo "The position of 5 in our string was $fivePos";

$fivePos2 = strpos($numberedString, "5", $fivePos + 1);

echo "
The position of the second 5 was $fivePos2";

Display:

The position of 5 in our string was 4
The position of the second 5 was 14

By taking the first match's position of 4 and adding 1 we then asked strpos to begin searching after the last
match. The string it was actually sesarching after computing the offset wa: 6789012345... Letting us find the
second 5 in the string.

If we use our knowledge of PHP While Loops we can find every single 5 in our string numberedString with
just a few lines of code.

PHP Code:

$numberedString = "1234567890123456789012345678901234567890";

$offset = 0; // initial offset is 0

$fiveCounter = 0;

while($offset = strpos($numberedString, "5", $offset + 1)){

 $fiveCounter++;

 echo "
Five #$fiveCounter is at position - $offset";

}

http://www.tizag.com/phpT/whileloop.php

Display:

Five #1 is at position - 4
Five #2 is at position - 14
Five #3 is at position - 24
Five #4 is at position - 34

That conditional statement in our while loop may look a little intimidating, but not if you break it down.

• $offset = strpos($numberedString, "5", $offset + 1) - This is our conditional statement for our PHP While
Loop. If this ever is false the while loop will stop running. This conditional statement always runs before
each pass through the while loop.

• strpos($numberedString, "5", $offset + 1) - This is the same code we used in a previous example. We
are going to search our string numberedString for the number 5 and use the last match's value (stored
in $offset) + 1 to skip over the last match. The first $offset we use has a value of 0, so that we start at
the beginning of the string.

• $offset = strpos(... We are going to store the location returned by strpos into $offset so that we can
skip this match the next time the while loop runs through the code. If strpos ever fails to find a match
then this will be set to false making our while loop stop executing.

http://www.tizag.com/phpT/whileloop.php
http://www.tizag.com/phpT/whileloop.php

PHP - String Capitalization Functions

If you've ever wanted to manipulate the capitalization of your PHP strings, then this lesson will be quite
helpful to you. PHP has three primary capitalization related functions: strtoupper, strtolower and ucwords. The
function names are pretty self-explanatory, but why they are useful in programming might be new to you.

Converting a String to Upper Case - strtoupper

The strtoupper function takes one argument, the string you want converted to upper case and returns the
converted string. Only letters of the alphabet are changed, numbers will remain the same.

PHP Code:

$originalString = "String Capitalization 1234";

$upperCase = strtoupper($originalString);

echo "Old string - $originalString
";

echo "New String - $upperCase";

Display:

Old string - String Capitalization 1234
New String - STRING CAPITALIZATION 1234

One might use this function to increase emphasis of a important point or in a title. Another time it might be
used with a font that looks very nice with all caps to fit the style of the web page design.

A more technical reason would be to convert two strings you are comparing to see if they are equal. By
converting them to the same capitalization you remove the possibility that they won't match simply because of
different capitalizations.

Converting a String to Lower Case - strtolower

The strtolower function also has one argument: the string that will be converted to lower case.

PHP Code:

$originalString = "String Capitalization 1234";

$lowerCase = strtolower($originalString);

echo "Old string - $originalString
";

echo "New String - $lowerCase";

Display:

Old string - String Capitalization 1234
New String - string capitalization 1234

Capitalizing the First Letter - ucwords

Titles of various media types often capitalize the first letter of each word and PHP has a time-saving
function that will do just this.

PHP Code:

$titleString = "a title that could use some hELP";

$ucTitleString = ucwords($titleString);

echo "Old title - $titleString
";

echo "New title - $ucTitleString";

Display:

Old title - a title that could use some hELP
New title - A Title That Could Use Some HELP

Notice that the last word "hELP" did not have the capitalization changed on the letters that weren't first,
they remained capitalized. If you want to ensure that only the first letter is capitalized in each word of your title,
first use the strtolower function and then the ucwords function.

PHP Code:

$titleString = "a title that could use some hELP";

$lowercaseTitle = strtolower($titleString);

$ucTitleString = ucwords($lowercaseTitle);

echo "Old title - $titleString
";

echo "New title - $ucTitleString";

Display:

Old title - a title that could use some hELP
New title - A Title That Could Use Some Help

PHP - String Explode

The PHP function explode lets you take a string and blow it up into smaller pieces. For example, if you
had a sentence you could ask explode to use the sentence's spaces " " as dynamite and it would blow up the
sentence into separate words, which would be stored in an array. The sentence "Hello, I would like to lose
weight." would look like this after explode got done with it:

1. Hello,
2. I
3. would
4. like
5. to
6. lose
7. weight.

The dynamite (the space character) disappears, but the other stuff remains, but in pieces. With that
abstract picture of the explode function in mind, lets take a look at how it really works.

The explode Function

The first argument that explode takes is the delimiter (our dynamite) which is used to blow up the second
argument, the original string. explode returns an array of string pieces from the original and they are numbered
in order, starting from 0. Lets take a phone number in the form ###-###-#### and use a hyphen "-" as our
dynamite to split the string into three separate chunks.

PHP Code:

$rawPhoneNumber = "800-555-5555";

$phoneChunks = explode("-", $rawPhoneNumber);

echo "Raw Phone Number = $rawPhoneNumber
";

echo "First chunk = $phoneChunks[0]
";

echo "Second chunk = $phoneChunks[1]
";

echo "Third Chunk chunk = $phoneChunks[2]";

Display:

Raw Phone Number = 800-555-5555
First chunk = 800
Second chunk = 555
Third Chunk chunk = 5555

explode Function - Setting a Limit

If you want to control the amount of destruction that explode can wreak on your original string, consider
using the third (optional) argument which allows you to set the number of pieces explode can return. This
means it will stop exploding once the number of pieces equals the set limit. Below we've blown up a sentence
with no limit and then with a limit of 4.

PHP Code:

$someWords = "Please don't blow me to pieces.";

$wordChunks = explode(" ", $someWords);

for($i = 0; $i < count($wordChunks); $i++){

 echo "Piece $i = $wordChunks[$i]
";

}

$wordChunksLimited = explode(" ", $someWords, 4);

for($i = 0; $i < count($wordChunksLimited); $i++){

 echo "Limited Piece $i = $wordChunksLimited[$i]
";

}

Display:

Piece 0 = Please
Piece 1 = don't
Piece 2 = blow
Piece 3 = me
Piece 4 = to
Piece 5 = pieces.
Limited Piece 0 = Please
Limited Piece 1 = don't
Limited Piece 2 = blow
Limited Piece 3 = me to pieces.

The limited explosion has 4 pieces (starting from 0, ending at 3). If you forgot how a for loop works, check
out PHP For Loops.

http://www.tizag.com/phpT/forloop.php

PHP - Array implode

The PHP function implode operates on an arrayand is known as the "undo" function of explode. If you
have used explode to break up a string into chunks or just have an array of stuff you can use implode to put
them all into one string.

PHP implode - Repairing the Damage

The first argument of implode is the string of characters you want to use to join the array pieces together.
The second argument is the array (pieces).

PHP Code:

$pieces = array("Hello", "World,", "I", "am", "Here!");

$gluedTogetherSpaces = implode(" ", $pieces);

$gluedTogetherDashes = implode("-", $pieces);

for($i = 0; $i < count($pieces); $i++){

 echo "Piece #$i = $pieces[$i]
";

}

echo "Glued with Spaces = $gluedTogetherSpaces
";

echo "Glued with Dashes = $gluedTogetherDashes";

Display:

Piece #0 = Hello
Piece #1 = World,
Piece #2 = I
Piece #3 = am
Piece #4 = Here!
Glued with Spaces = Hello World, I am Here!
Glued with Dashes = Hello-World,-I-am-Here!

The implode function will convert the entire array into a string and there is no optional argument to limit
this as there was in the explode function.

PHP Date - Robust Dates and Times

While PHP's date() function may seem to have an overwhelming amount of options available, isn't it
always better to have more choices than not enough? With PHP's date function you format timestamps, so they
are more human readable.

This lesson will teach you how to display the current time, formating PHP's timestamp, and show you all
the various date arguments for reference purposes.

PHP Date - The Timestamp

The date function always formats a timestamp, whether you supply one or not. What's a timestamp? Good
question!

• Timestamp: A timestamp is the number of seconds from January 1, 1970 at 00:00. Otherwise known
as the Unix Timestamp, this measurement is a widely used standard that PHP has chosen to utilize.

PHP Date - What Time Is It?

The date function uses letters of the alphabet to represent various parts of a typical date and time format.
The letters we will be using in our first example are:

• d: The day of the month. The type of output you can expect is 01 through 31.
• m: The current month, as a number. You can expect 01 through 12.
• y: The current year in two digits ##. You can expect 00 through 99

We'll tell you the rest of the options later, but for now let's use those above letters to format a simple date!
The letters that PHP uses to represent parts of date and time will automatically be converted by PHP.

However, other characters like a slash "/" can be inserted between the letters to add additional formatting.
We have opted to use the slash in our example.

PHP Code:

<?php

echo date("m/d/y");

?>

If the 2010 Winter Olympics were just finishing up, you would see something like:

Display:

02/27/10

Be sure to test this out on your own PHP enabled server, it's really great to see the instant results
available with PHP date!

PHP Date - Supplying a Timestamp

As our first example shows, the first argument of the date function tells PHP how you would like your date
and time displayed. The second argument allows for a timestamp and is optional.

This example uses the mktime function to create a timestamp for tomorrow. To go one day in the future
we simply add one to the day argument of mktime. For your future reference, we have the arguments of
mktime.

Note: These arguments are all optional. If you do not supply any arguments the current time will be used
to create the timestamp.

• mktime(hour, minute, second, month, day, year, daylight savings time)

PHP Code:

<?php

$tomorrow = mktime(0, 0, 0, date("m"), date("d")+1, date("y"));

echo "Tomorrow is ".date("m/d/y", $tomorrow);

?>

Notice that we used one letter at a time with the function date to get the month, day and year. For example
the date("m") will return the month's number 01-12.

If we were to run our new script just after the 2010 Winter Olympics our display would look like:

Display:

Tomorrow is 02/28/10

PHP Date - Reference

Now that you know the basics of using PHP's date function, you can easily plug in any of the following
letters to format your timestamp to meet your needs.
Important Full Date and Time:

• r: Displays the full date, time and timezone offset. It is equivalent to manually entering date("D, d M Y
H:i:s O")

Time:

• a: am or pm depending on the time
• A: AM or PM depending on the time
• g: Hour without leading zeroes. Values are 1 through 12.
• G: Hour in 24-hour format without leading zeroes. Values are 0 through 23.
• h: Hour with leading zeroes. Values 01 through 12.
• H: Hour in 24-hour format with leading zeroes. Values 00 through 23.
• i: Minute with leading zeroes. Values 00 through 59.
• s: Seconds with leading zeroes. Values 00 through 59.

Day:

• d: Day of the month with leading zeroes. Values are 01 through 31.
• j: Day of the month without leading zeroes. Values 1 through 31
• D: Day of the week abbreviations. Sun through Sat
• l: Day of the week. Values Sunday through Saturday
• w: Day of the week without leading zeroes. Values 0 through 6.
• z: Day of the year without leading zeroes. Values 0 through 365.

Month:

• m: Month number with leading zeroes. Values 01 through 12
• n: Month number without leading zeroes. Values 1 through 12
• M: Abbreviation for the month. Values Jan through Dec
• F: Normal month representation. Values January through December.
• t: The number of days in the month. Values 28 through 31.

Year:

• L: 1 if it's a leap year and 0 if it isn't.
• Y: A four digit year format
• y: A two digit year format. Values 00 through 99.

Other Formatting:

• U: The number of seconds since the Unix Epoch (January 1, 1970)
• O: This represents the Timezone offset, which is the difference from Greenwich Meridian Time (GMT).

100 = 1 hour, -600 = -6 hours

We suggest that you talk a few minutes to create several timestamps using PHP's mktime function and
just try out all these different letters to get your feet wet with PHP's date function.

PHP Sessions - Why Use Them?

As a website becomes more sophisticated, so must the code that backs it. When you get to a stage where
your website need to pass along user data from one page to another, it might be time to start thinking about
using PHP sessions.

A normal HTML website will not pass data from one page to another. In other words, all information is
forgotten when a new page is loaded. This makes it quite a problem for tasks like a shopping cart, which
requires data(the user's selected product) to be remembered from one page to the next.

PHP Sessions - Overview

A PHP session solves this problem by allowing you to store user information on the server for later use
(i.e. username, shopping cart items, etc). However, this session information is temporary and is usually deleted
very quickly after the user has left the website that uses sessions.

It is important to ponder if the sessions' temporary storage is applicable to your website. If you require a
more permanent storage you will need to find another solution, like a MySQL database.

Sessions work by creating a unique identification(UID) number for each visitor and storing variables based
on this ID. This helps to prevent two users' data from getting confused with one another when visiting the same
webpage.

Note:If you are not experienced with session programming it is not recommended that you use sessions
on a website that requires high-security, as there are security holes that take some advanced techniques to
plug.

Starting a PHP Session

Before you can begin storing user information in your PHP session, you must first start the session. When
you start a session, it must be at the very beginning of your code, before any HTML or text is sent.

Below is a simple script that you should place at the beginning of your PHP code to start up a PHP
session.

PHP Code:

<?php

session_start(); // start up your PHP session!

?>

This tiny piece of code will register the user's session with the server, allow you to start saving user
information and assign a UID (unique identification number) for that user's session.

Storing a Session Variable

When you want to store user data in a session use the $_SESSION associative array. This is where you
both store and retrieve session data. In previous versions of PHP there were other ways to perform this store
operation, but it has been updated and this is the correct way to do it.

http://www.tizag.com/phpT/arrays.php

PHP Code:

<?php

session_start();

$_SESSION['views'] = 1; // store session data

echo "Pageviews = ". $_SESSION['views']; //retrieve data

?>

Display:

Pageviews = 1

In this example we learned how to store a variable to the session associative array $_SESSION and also
how to retrieve data from that same array.

PHP Sessions: Using PHP's isset Function

Now that you know can easily store and retrieve data from the $_SESSION array, we can now explore
some of the real functionality of sessions. When you create a variable and store it in a session, you probably
want to use it in the future. However, before you use a session variable it is necessary that you check to see if
it exists already!

This is where PHP's isset function comes in handy. isset is a function that takes any variable you want to
use and checks to see if it has been set. That is, it has already been assigned a value.

With our previous example, we can create a very simple pageview counter by using isset to check if the
pageview variable has already been created. If it has we can increment our counter. If it doesn't exist we can
create a pageview counter and set it to one. Here is the code to get this job done:

PHP Code:

<?php

session_start();

if(isset($_SESSION['views']))

 $_SESSION['views'] = $_SESSION['views']+ 1;

else

 $_SESSION['views'] = 1;

echo "views = ". $_SESSION['views'];

?>

The first time you run this script on a freshly opened browser the if statement will fail because no
session variable views would have been stored yet. However, if you were to refresh the page the if statement
would be true and the counter would increment by one. Each time you reran this script you would see an
increase in view by one.

Cleaning and Destroying your Session

Although a session's data is temporary and does not require that you explicitly clean after yourself, you
may wish to delete some data for your various tasks.

Imagine that you were running an online business and a user used your website to buy your goods. The
user has just completed a transaction on your website and you now want to remove everything from their
shopping cart.

PHP Code:

<?php

session_start();

if(isset($_SESSION['cart']))

 unset($_SESSION['cart']);

?>

You can also completely destroy the session entirely by calling the session_destroy function.

PHP Code:

<?php

session_start();

session_destroy();

?>

Destroy will reset your session, so don't call that function unless you are entirely comfortable losing all
your stored session data!

PHP Cookies - Background

Cookies have been around for quite some time on the internet. They were invented to allow webmaster's
to store information about the user and their visit on the user's computer.

At first they were feared by the general public because it was believed they were a serious privacy risk.
Nowadays nearly everyone has cookies enabled on their browser, partly because there are worse things to
worry about and partly because all of the "trustworthy" websites now use cookies.

This lesson will teach you the basics of storing a cookie and retrieving a cookie, as well as explaining the
various options you can set with your cookie.

Creating Your First PHP Cookie

When you create a cookie, using the function setcookie, you must specify three arguments. These
arguments are setcookie(name, value, expiration):

1. name: The name of your cookie. You will use this name to later retrieve your cookie, so don't forget it!
2. value: The value that is stored in your cookie. Common values are username(string) and last

visit(date).
3. expiration: The date when the cookie will expire and be deleted. If you do not set this expiration date,

then it will be treated as a session cookie and be removed when the browser is restarted.

In this example we will be creating a cookie that stores the user's last visit to measure how often people
return to visit our webpage. We want to ignore people that take longer than two months to return to the site, so
we will set the cookie's expiration date to two months in the future!

PHP Code:

<?php

//Calculate 60 days in the future

//seconds * minutes * hours * days + current time

$inTwoMonths = 60 * 60 * 24 * 60 + time();

setcookie(lastVisit, date("G:i - m/d/y"), $inTwoMonths);

?>

Don't worry if you can't follow the somewhat involved date calculations in this example. The important part
is that you know how to set a cookie, by specifying the three important arguments: name, value and expiration
date.

Retrieving Your Fresh Cookie

If your cookie hasn't expired yet, let's retrieve it from the user's PC using the aptly named $_COOKIE
associative array. The name of your stored cookie is the key and will let you retrieve your stored cookie value!

PHP Code:

<?php

if(isset($_COOKIE['lastVisit']))

 $visit = $_COOKIE['lastVisit'];

else

 echo "You've got some stale cookies!";

echo "Your last visit was - ". $visit;

?>

This handy script first uses the isset function to be sure that our "lastVisit" cookie still exists on the user's
PC, if it does, then the user's last visit is displayed. If the user visited our site on February 28, 2008 it might look
something like this:

Display:

Your last visit was - 11:48 - 02/28/08

PHP HTML Form Example

Use this example as a form walkthrough. We will briefly build an HTML form, and call the form data using
PHP. PHP offers several methods for achieving this goal, so feel free to substitute alternative methods as you
follow along. Our example will show you a method using a single .php file, combining both PHP and HTML in
one simple text file, to retrieve the data and display the results. Below is a quick review of bullets, check boxes,
text fields, and input fields and using them to build a form to retrieve some personal information about our user.

Building the HTML Form

Step 1 is to build the form document to retrieve user date. If you already experienced using HTML forms,
this should be review, however, if not we recommend a brief visit through the Tizag HTML Forms Tutorial. The
code below shows a simple html form document set up to retrieve some personal knowledge about our user.

Input Fields

Input fields are the simplest forms to grasp. As mentioned in the Forms Tutorial, just be sure to place the
name attribute within the tags and specify a name for the field. Also be aware that for our form's action we have
placed the $PHP_SELF super global to send our form to itself. We will be integrating more PHP code into our
form as we continue on so be sure to save the file with a .php extension.

Code:

<html>
<head>
<title>Personal INFO</title>
</head>
<body>
<form method="post" action="<?php echo $PHP_SELF;?>">
First Name:<input type="text" size="12" maxlength="12"
name="Fname">:

Last Name:<input type="text" size="12" maxlength="36"
name="Lname">:

Radios and Checkboxes

The catch with radio buttons lies with the value attribute. The text you place under the value attribute will
be displayed by the browser when the variable is called with PHP.

Check boxes require the use of an array. PHP will automatically place the checked boxes into an array if
you place [] brackets at the end of each name.

http://www.tizag.com/htmlT/forms.php

Code:

...
Gender::

Male:<input type="radio" value="Male" name="gender">:

Female:<input type="radio" value="Female" name="gender">:

Please choose type of residence::

Steak:<input type="checkbox" value="Steak" name="food[]">:

Pizza:<input type="checkbox" value="Pizza" name="food[]">:

Chicken:<input type="checkbox" value="Chicken" name="food[]">:

Textareas

In reality, textareas are oversized input fields. Treat them the same way, just be aware of the wrap
attribute and how each type of wrap will turn out. PHP relys on this attribute to display the textarea.

Code:

...
<textarea rows="5" cols="20" name="quote" wrap="physical">Enter
your favorite quote!</textarea>:

Drop Down Lists & Selection Lists

These two forms act very similar to the already discussed radio and checkbox selections. To name a
selection form, place the name attribute within the select tags at the beginning of the form, and then place the
appropriate value to fit each option.

Code:

...
Select a Level of Education:

<select name="education">
<option value="Jr.High">Jr.High</option>
<option value="HighSchool">HighSchool</option>
<option value="College">College</option></select>:

Select your favorite time of day::

<select name="TofD" size="3">
<option value="Morning">Morning</option>
<option value="Day">Day</option>
<option value="Night">Night</option></select>:

Be sure to check through your code to double check for bugs or errors especially look at each name
attribute to be sure your names are all correct. As far as names go, you can copy the ones shown or simply
make up your own, just be sure you remember what they are. Your form should be similar to the one shown
here.

Display:

First Name:

Last Name:
Gender:

Male:

Female:
Favorite Food:

Steak:

Pizza:

Chicken:
Enter your favorite quote!

Select a Level of Education:

Jr.High

Select your favorite time of day:
Morning
Day
Night

Submission Button

We mentioned that the submission button was missing. Now's the time to throw it into the existing code.
The button is the same as any submission button, the only thing we need to be sure to add is a name to it so
we can call it later using PHP.
Code:

...
<input type="submit" value="submit" name="submit">

</form>

Retrieving Form Data - Setting up Variables

In PHP there lies an array used to call data from our form. It's a superglobal of PHP and it's one that is
great to have memorized. $_POST retrieves our form data and output's it directly to our browser. The best way
to do this, is to make variables for each element in our form, so we can output this data at will, using our own
variable names. Place the following lines of code at the top of your form file using the correct PHP syntax.

Code:

<?php
$Fname = $_POST["Fname"];
$Lname = $_POST["Lname"];
$gender = $_POST["gender"];
$food = $_POST["food"];
$quote = $_POST["quote"];
$education = $_POST["education"];
$TofD = $_POST["TofD"];
?>

All we are doing here is making easier variable names for our form output. With the above statements, we
can call our data with ease! Any capital letters under the name attribute must match up with your statements
above, avoid overly complicated names to simplify your debugging process and it can save you some
frustration as well.

$PHP_SELF; - Submission

For the form action, we will call PHP's $PHP_SELF; array. This array is set up to call itself when
submitted. Basically, we are setting up the form to call "formexample.php", itself. Here's a glypmse of how to do
just that.

Code:

...
$quote = $_POST["quote"];
$education = $_POST["education"];
$TofD = $_POST["TofD"];
?>
<html>
<head>
<title>Personal INFO</title>
</head>
<body>
<form method="post" action="<?php echo $PHP_SELF;?>">
...

We now have a completed form ready to recieve data and display results. However, we need to adjust
things so that once the data has been submitted we are directed to the results. Typically, we have a completely
new .php file that recieves our HTML form data. In this scenerio, we will use an if statement to display first our
form, and then our form results upon submission. This is a practical method when entering information into
databases as you learn more.

For now here's a look at our complted form document thus far.

Code:

<?php
$Fname = $_POST["Fname"];
$Lname = $_POST["Lname"];
$gender = $_POST["gender"];
$food = $_POST["food"];
$quote = $_POST["quote"];
$education = $_POST["education"];
$TofD = $_POST["TofD"];
?>
<html>
<head>
<title>Personal INFO</title>
</head>
<body>
<form method="post" action="<?php echo $PHP_SELF;?>">
First Name:<input type="text" size="12" maxlength="12"
name="Fname">

Last Name:<input type="text" size="12" maxlength="36"
name="Lname">

Gender:

Male:<input type="radio" value="Male" name="gender">

Female:<input type="radio" value="Female" name="gender">

Please choose type of residence:

Steak:<input type="checkbox" value="Steak" name="food[]">

Pizza:<input type="checkbox" value="Pizza" name="food[]">

Chicken:<input type="checkbox" value="Chicken" name="food[]">

<textarea rows="5" cols="20" name="quote" wrap="physical">Enter
your favorite quote!</textarea>

Select a Level of Education:

<select name="education">
<option value="Jr.High">Jr.High</option>
<option value="HighSchool">HighSchool</option>
<option value="College">College</option></select>

Select your favorite time of day:

<select name="TofD" size="3">
<option value="Morning">Morning</option>
<option value="Day">Day</option>
<option value="Night">Night</option></select>

<input type="submit" value="submit" name="submit">
</form>

Page Display

At this point we have a completed form with correct action and submission. We now need to do a little
programming to achieve what we want displayed before and after a certain event. Before the user submits any
information. We need to first direct them to our form (obviously) and second, we will display their results using
our variable names.

PHP offers an excellent way to create this effect using an if statement. Place the following lines near the
top of your formexample.php file.

Code:

<?php
$Fname = $_POST["Fname"];
$Lname = $_POST["Lname"];
$gender = $_POST["gender"];
$food = $_POST["food"];
$quote = $_POST["quote"];
$education = $_POST["education"];
$TofD = $_POST["TofD"];
if (!isset($_POST['submit'])) { // if page is not submitted to
itself echo the form
?>

Echo Back the Results

Here, we echo back the results in a boring, line by line method, just to show some basic syntax.(feel free
to be creative here) We use the else clause of our if statement to direct the users to our results section.

Code:

...
<option value="Night">Night</option></select>
<input type="submit" value="submit" name="submit">
</form>
<?
} else {
echo "Hello, ".$Fname." ".$Lname.".
";
echo "You are ".$gender.", and you like ";
foreach ($food as $f) {
echo $f."
";
}
echo "<i>".$quote."</i>
";
echo "You're favorite time is ".$TofD.", and you passed
".$education."!
";
}
?>

Here's the completed code

Code:

<?php
$Fname = $_POST["Fname"];
$Lname = $_POST["Lname"];
$gender = $_POST["gender"];
$food = $_POST["food"];
$quote = $_POST["quote"];
$education = $_POST["education"];
$TofD = $_POST["TofD"];
if (!isset($_POST['submit'])) { // if page is not submitted to
itself echo the form
?>
<html>
<head>
<title>Personal INFO</title>
</head>
<body>
<form method="post" action="<?php echo $PHP_SELF;?>">
First Name:<input type="text" size="12" maxlength="12"
name="Fname">

Last Name:<input type="text" size="12" maxlength="36"
name="Lname">

Gender:

Male:<input type="radio" value="Male" name="gender">

Female:<input type="radio" value="Female" name="gender">

Please choose type of residence:

Steak:<input type="checkbox" value="Steak" name="food[]">

Pizza:<input type="checkbox" value="Pizza" name="food[]">

Chicken:<input type="checkbox" value="Chicken" name="food[]">

<textarea rows="5" cols="20" name="quote" wrap="physical">Enter
your favorite quote!</textarea>

Select a Level of Education:

<select name="education">
<option value="Jr.High">Jr.High</option>
<option value="HighSchool">HighSchool</option>
<option value="College">College</option></select>

Select your favorite time of day:

<select name="TofD" size="3">
<option value="Morning">Morning</option>
<option value="Day">Day</option>
<option value="Night">Night</option></select>

<input type="submit" value="submit" name="submit">
</form>
<?
} else {
echo "Hello, ".$Fname." ".$Lname.".
";
echo "You are ".$gender.", and you like ";
foreach ($food as $f) {
echo $f."
";
}
echo "<i>".$quote."</i>
";
echo "You're favorite time is ".$TofD.", and you passed

".$education."!
";
}
?>

Here is the completed form formexample.php

First Name:

Last Name:
Gender:

Male:

Female:
Please choose your favorite foods:

Steak:

Pizza:

Chicken:
Enter your favorite quote!

Select a Level of Education:

Jr.High

Select your favorite time of day:
Morning
Day
Night

submit

http://www.tizag.com/phpT/examples/formexample.php

	01_intro.doc
	PHP Tutorial - Learn PHP
	PHP - What is it?
	PHP - What's it do?
	What You Should Know
	 Tutorial Overview

	03_syntax.doc
	PHP - Syntax
	PHP Code:

	How to Save Your PHP Pages
	 Example Simple HTML & PHP Page
	PHP and HTML Code:
	Display:

	 The Semicolon!
	PHP and HTML Code:
	Display:

	 White Space
	PHP and HTML Code:
	Display:

	04_variables.doc
	PHP - Variables
	A Quick Variable Example
	PHP Code:

	PHP Variable Naming Conventions

	05_echo.doc
	PHP - Echo
	Outputting a String
	PHP Code:
	Display:
	I love using PHP!

	Careful When Echoing Quotes!
	 PHP Code:

	Echoing Variables
	PHP Code:
	Display:

	Echoing Variables and Text Strings
	 PHP Code:
	Display:

	06_strings.doc
	PHP - Strings
	PHP - String Creation
	PHP Code:
	Display:

	PHP - String Creation Single Quotes
	PHP Code:
	PHP Code:

	 PHP - String Creation Double-Quotes
	PHP Code:

	PHP - String Creation Heredoc
	 PHP Code:
	Display:

	07_operators.doc
	PHP - Operators
	Assignment Operators
	Arithmetic Operators
	 PHP Code:
	Display:

	Comparison Operators
	 String Operators
	PHP Code:
	Display:

	Combination Arithmetic & Assignment Operators
	 Pre/Post-Increment & Pre/Post-Decrement
	PHP Code:
	Display:

	08_comments.doc
	Using Comments in PHP
	HTML Code:

	PHP Comment Syntax: Single Line Comment
	PHP Code:
	Display:

	 PHP Comment Syntax: Multiple Line Comment
	PHP Code:
	Display:

	Good Commenting Practices

	09_include.doc
	The Include Function
	An Include Example
	menu.php Code:
	index.php Code:
	Display:

	 What do Visitors See?
	View Source of index.php to a Visitor:

	Include Recap

	10_require.doc
	PHP Require Function
	Require vs Include
	PHP Code:
	Display:
	PHP Code:
	Display:

	11_if_statement.doc
	The If Statement
	The PHP If Statement
	If Statement Example
	PHP Code:
	 Display:

	A False If Statement
	PHP Code:
	Display:

	12_if_else_statement.doc
	If/Else Conditional Statment
	If/Else an Example
	PHP Code:
	Display:

	 Execute Else Code with False
	PHP Code:
	Display:

	13_else_if_statement.doc
	PHP - Elseif
	PHP - Elseif What is it?
	PHP - Using Elseif with If...Else
	PHP Code:
	PHP Code:
	 Display:

	14_switch_statement.doc
	PHP Switch Statement
	PHP Switch Statement: Speedy Checking
	PHP Switch Statement Example
	PHP Code:
	 Display:

	PHP Switch Statement: Default Case
	PHP Code:
	Display:

	15_forms.doc
	Using PHP With HTML Forms
	Creating the HTML Form
	order.html Code:
	Display:
	Tizag Art Supply Order Form

	 order.html Code:

	PHP Form Processor
	process.php Code:
	 process.php Code:

	PHP & HTML Form Review

	16_functions.doc
	PHP - Functions
	Creating Your First PHP Function
	PHP Code:
	PHP Code:

	 Using Your PHP Function
	PHP Code:
	PHP Code with Function:
	Display:

	 PHP Functions - Parameters
	PHP Code with Function:
	PHP Code:
	Display:
	 PHP Code:
	Display:

	PHP Functions - Returning Values
	PHP Code:
	 Display:

	PHP Functions - Practice Makes Perfect

	17_arrays.doc
	PHP - Arrays
	PHP - A Numerically Indexed Array
	PHP Code:
	PHP Code:
	Display:

	 PHP - Associative Arrays
	PHP Code:
	Display:

	18_while_loop.doc
	PHP - While Loop
	Simple While Loop Example
	Pseudo PHP Code:

	A Real While Loop Example
	 Pseudo PHP Code:
	Display:

	19_for_loop.doc
	PHP - For Loop
	For Loop Example
	Pseudo PHP Code:
	PHP Code:
	 Display:

	20_for_each_loop.doc
	PHP For Each Loop
	PHP For Each: Example
	PHP Code:
	Display:

	Foreach Syntax: $something as $key => $value
	PHP Code:
	Display:

	21_do_while_loop.doc
	PHP - Do While Loop
	PHP - While Loop and Do While Loop Contrast
	PHP Code:
	Display:
	PHP Code:
	Display:

	22_post_get.doc
	PHP - POST & GET
	POST - Review
	HTML Code Excerpt:
	PHP Code Excerpt:

	 PHP - GET
	HTML Code Excerpt:
	PHP Code Excerpt:

	Security Precautions

	23_htmlentities.doc
	PHP htmlentities Function
	PHP - Converting HTML into Entities
	PHP Code:
	Safe Raw HTML Code:
	 Dangerous Raw HTML Code:
	Safe Display:
	Dangerous Display:

	When Would You Use htmlentities?

	24_files.doc
	PHP - Files
	PHP - Files: Be Careful
	PHP - Files: Overview

	25_file_create.doc
	PHP - File Create
	PHP - Creating Confusion
	PHP - How to Create a File
	PHP Code:

	 PHP - Permissions

	26_file_open.doc
	PHP - File Open
	PHP - Different Ways to Open a File
	PHP - Explanation of Different Types of fopen
	 PHP - File Open: Advanced
	PHP - File Open: Cookie Cutter
	Pseudo PHP Code:

	PHP - File Open: Summary

	27_file_close.doc
	PHP - File Close
	PHP - File Close Description
	PHP - File Close Function
	PHP Code:

	28_file_write.doc
	PHP - File Write
	PHP - File Open: Write
	PHP Code:

	PHP - File Write: fwrite Function
	PHP Code:
	Contents of the testFile.txt File:

	 PHP - File Write: Overwriting
	PHP Code:
	Contents of the testFile.txt File:

	29_file_read.doc
	PHP - File Read
	PHP - File Open: Read
	PHP Code:
	testFile.txt Contents:

	PHP - File Read: fread Function
	PHP Code:
	Display:
	PHP Code:
	Display:

	PHP - File Read: gets Function
	PHP Code:
	testFile.txt Contents:

	30_file_delete.doc
	PHP - File Delete
	PHP - File Unlink
	PHP - Unlink Function
	PHP Code:
	PHP Code:

	PHP - Unlink: Safety First!

	31_file_append.doc
	PHP - File Append
	PHP - File Open: Append
	PHP Code:

	PHP - File Write: Appending Data
	PHP Code:
	Contents of the testFile.txt File:

	 PHP - Append: Why Use It?

	32_file_truncate.doc
	PHP - File Truncate
	PHP - File Open: Truncate
	PHP Code:

	PHP - Truncate: Why Use It?

	33_file_upload.doc
	PHP - File Upload
	PHP - File Upload: HTML Form
	HTML Code:
	Display:

	 PHP - File Upload: What's the PHP Going to Do?
	PHP - File Upload: uploader.php
	PHP Code:

	 PHP - File Upload: move_uploaded_file Function
	PHP Code:

	PHP - File Upload: Safe Practices!

	34_string_strpos.doc
	PHP - String Position - strpos
	Searching a String with strpos
	PHP Code:
	Display:

	Finding All Occurrences in a String with Offset
	 PHP Code:
	Display:
	PHP Code:
	 Display:

	35_string_capitalization.doc
	PHP - String Capitalization Functions
	Converting a String to Upper Case - strtoupper
	PHP Code:
	Display:

	Converting a String to Lower Case - strtolower
	PHP Code:
	Display:

	Capitalizing the First Letter - ucwords
	PHP Code:
	Display:
	PHP Code:
	Display:

	36_string_explode.doc
	PHP - String Explode
	The explode Function
	PHP Code:
	Display:

	explode Function - Setting a Limit
	PHP Code:
	Display:

	37_string_implode.doc
	PHP - Array implode
	PHP implode - Repairing the Damage
	PHP Code:
	Display:

	38_date_time.doc
	PHP Date - Robust Dates and Times
	PHP Date - The Timestamp
	PHP Date - What Time Is It?
	PHP Code:
	Display:

	 PHP Date - Supplying a Timestamp
	PHP Code:
	Display:

	PHP Date - Reference

	39_sessions.doc
	PHP Sessions - Why Use Them?
	PHP Sessions - Overview
	Starting a PHP Session
	PHP Code:

	Storing a Session Variable
	 PHP Code:
	Display:

	PHP Sessions: Using PHP's isset Function
	PHP Code:

	 Cleaning and Destroying your Session
	PHP Code:
	PHP Code:

	40_cookies.doc
	PHP Cookies - Background
	Creating Your First PHP Cookie
	PHP Code:

	Retrieving Your Fresh Cookie
	PHP Code:
	Display:

	90_html_form_example.doc
	PHP HTML Form Example
	Building the HTML Form
	Input Fields
	Code:

	Radios and Checkboxes
	 Code:

	Textareas
	Code:

	Drop Down Lists & Selection Lists
	Code:
	Display:
	Code:
	Code:
	Code:
	Code:
	Code:
	Code:

